QCD challenges at the LHC:

from pp to AA

String percolation model prediction for small systems at LHC energies

Irais Bautista
CONACYT, FCFM-BUAP
A. Fernández, P. Ghosh, R. Vazquez, A. Sierra

Jan 20th 2016, Taxco, Mexico

Outline

- Introduction to SPM
- Phase change signals
- $p-p$
- $\mathrm{p}-\mathrm{Pb}$

F. Karsch, Ouark Mattor 2004 - p.20/25

Quark Gluon Plasma sQcP

String Percolation Model

- Macroscopic system where we have the formation of related structures, which each time goes bigger by a random addition of links process between the components.
- For a given critical density of links one gets a macro-structure called cluster (dimension of the order of the total system).

String Percolation Model

- In the transverse impact parameter plane the strings look like discs (2 dimensional percolation theory)

- At a given density the strings will start to overlap forming clusters
- At the critical density a macroscopic cluster appears and marks a geometrical phase transition.

- Due to the color random summation of the color charges $\operatorname{SU}(3)$ the total change generates a reduction in multiplicity and an increase in the string tension $\left\langle p_{T}^{2}\right\rangle$
- The stretched strings between the partons decay into new pairs of partons and so new strings are formed. Subsequently, particles are produced from interaction of partons by the Schwinger Mechanism
- The critical parameter is the string density.

$$
\xi=N_{s} \frac{S_{1}}{S_{A}}, \xi_{c}=1.1-1.5
$$

- The area cover when a critical value is reached is given by

$$
1-e^{-\xi}
$$

- We asume that a cluster behaves as a single string but with higher momentum and color
- In the n large limit the multiplicities and the transverse momentum can be express as:

$$
\left.\left.<\mu_{n}>=\sqrt{\frac{n S_{n}}{S_{1}}}<\mu_{1}\right\rangle,<p_{T n}^{2}>=\sqrt{\frac{n S_{1}}{S_{n}}}<p_{T 1}^{2}\right\rangle
$$

$$
\begin{aligned}
& \frac{d n}{d y} \sim F(\xi) \bar{N}_{s} \\
& F(\xi)=\sqrt{\frac{1-e^{-\xi}}{\xi}} \\
& N_{p}^{s}=2+4\left(\frac{r_{0}}{R_{p}}\right)^{2}\left(\frac{\sqrt{s}}{m_{p}}\right)^{2 \lambda}
\end{aligned}
$$

- mp-mass of the proton
- Rp -radius of the proton

$$
\lambda=.201
$$

- In pp

$$
\xi=N_{p}^{s}\left(\frac{r_{0}}{R_{p}}\right)^{2}
$$

- $d n_{c h}^{p p} /\left.d y\right|_{y=0}=\kappa F(\xi) N_{p}^{s}$ with $\kappa=.63$

Multiplicity dependence on \sqrt{s}. Data from $p-p$ PDG,
I. Bautista, J. G. Milhano, C. Pajares and \ddagger_{2} Dias de Deus, Phys. Lett. B715, 230 (2012).

- $d n_{c h}^{p p} /\left.d \eta\right|_{\eta}=\kappa^{\prime} J F(\xi) N_{p}^{s} \frac{1}{\exp \left(\frac{\eta-(1-\alpha) Y}{\delta}\right)+1}$

+ TOTEM 7 TeV
- CMS 7 TeV
+ CMS 2.36 TeV
+ CDF 1.8 TeV NSD
1 CDF 630 GeV NSD
© UA5 900 GeV NSD
- UA5 546 GeV NSD

中 UA1 540 GeV NSD

- P238 630 GeV NSD

4 UA5 200 GeV NSD

- UA5 53 GeV NSD

Comparison of the results from the evolution of the $\frac{d n_{c h}}{d \eta}$ with dependence in pseudorapidity for $p-p$ collisions at different energies (lines).
I. Bautista,J. Dias de Deus, C. Pajares, Phys.Rev. C86 (2012) 034909.

$$
\begin{aligned}
& \frac{d^{2} N}{d p_{T}^{2}}=\omega\left(\alpha, p_{0}, p_{T}\right)= \frac{(\alpha-1)(\alpha-2)}{2 \pi p_{0}^{2}} \frac{p_{0}^{\alpha}}{\left[p_{0}+p_{T}\right]^{\alpha}} \\
& p_{0} \rightarrow p_{0} \sqrt{\frac{F(\zeta)}{F\left(\zeta_{H M}\right)}}
\end{aligned}
$$

- Transverse momentum distribution

$$
\begin{gathered}
\frac{d^{2} N}{d p_{T}^{2}}=\frac{(\alpha-1)(\alpha-2)\left(p_{0} \sqrt{\frac{F\left(\zeta_{p p}\right)}{F\left(\zeta_{H M}\right)}}\right)^{\alpha-2}}{2 \pi\left[p_{0} \sqrt{\frac{F\left(\zeta_{p p}\right)}{F\left(\zeta_{H M}\right)}}+p_{T}\right]^{\alpha}} \\
\frac{1}{N} \frac{d^{2} N}{d \eta d p_{T}}=\left.a^{\prime}(\sqrt{s}) \frac{d N}{d \eta}\right|_{\eta=0} ^{p p}(\sqrt{s}) \omega\left(\alpha, p_{0}, p_{T}\right)=\frac{a\left(p_{0} \frac{F(\zeta p p)}{F\left(\zeta_{H M}\right)}\right)^{\alpha-2}}{\left[p_{0} \sqrt{\frac{F(\zeta p p)}{F\left(\zeta_{H M}\right)}}+p_{T}\right]^{\alpha-1}}
\end{gathered}
$$

pp collisions

$$
\frac{1}{N} \frac{d^{2} N}{d \eta d p_{T}}=\frac{a p_{0}^{\alpha-2}}{\left[p_{0}+p_{T}\right]^{\alpha-1}}
$$

Figure: Fits to the transverse momentum distribution for energies $\sqrt{s}=900 \mathrm{GeV}$ in $p-p$ Eur.Phys.J. C75 (2015) 226.

Figure: Fits to the transverse momentum distribution for energies $\sqrt{s}=7 \mathrm{TeV}$ in $p-p$ collisions for different multiplicity classes from $N_{\text {track }}=40$ grey line to $N_{\text {track }}=131$ orange line. Data taken from http://hepdata.cedar.ac.uk/view/ins1123117.

Figure: Fits to the transverse momentum distribution for energies $\sqrt{s}=2.76 \mathrm{TeV}$ in $p-p$ collisions for different multiplicity classes from $N_{\text {track }}=40$ grey line to $N_{\text {track }}=98$ pink line. Data taken from http://hepdata.cedar.ac.uk/view/ins1123117.

Figure: Fits to the transverse momentum distribution for energies $\sqrt{s}=900 \mathrm{GeV}$ in $p-p$ collisions for different multiplicity classes from $N_{\text {track }}=40$ grey line to $N_{\text {track }}=75$ blue line. Data taken from http://hepdata.cedar.ac.uk/view/ins1123117.

Figure: Color reduction factor at high multiplicities for different energies

- The Schwinger mechanism for massless particles

$$
\frac{d N}{d p_{T}} \sim e^{-\sqrt{2 F\left(\zeta^{t}\right)} \frac{p_{T}}{\left\langle p_{T}\right\rangle_{1}}}
$$

- The average value of the string tension which value fluctuates around its mean value because the chromoelectric field is not constant

$$
\left\langle x^{2}\right\rangle=\pi\left\langle p_{T}^{2}\right\rangle_{1} / F(\zeta)
$$

- The fluctuations of the chromo electric field strength lead to a Gaussian distribution of the string tension that transform it into a thermal distribution, where the temperature is given by

$$
T\left(\zeta^{t}\right)=\sqrt{\frac{\left\langle p_{T}^{2}\right\rangle_{1}}{2 F\left(\zeta^{t}\right)}}
$$

- We consider that the experimentally determined chemical freeze out temperature is a good measure of the phase transition temperature Tc
- We calculate the effective temperature, T, from the equation, for each multiplicity class for a critical density 1.2 and at the critical temperature Tc $=154$ $\pm 9 \mathrm{MeV}$, as obtained by the latest LQCD results from the HotLQCD collaboration

$$
T_{c}=154 \pm 9 \mathrm{MeV}^{1}
$$

- With the corresponding $\left\langle p_{T}\right\rangle_{1} \sim 190.25 \pm 11.12 \mathrm{MeV} / \mathrm{c}$ consistent with the measured of direct photon enhanced measured
[1] HotQCD: Phys. Rev. D85, 054503 (2012)

FIG. 3. Efective temperature vs $d n / d \eta$.

- The evolution of the mean transverse momentum can also described as an inverse function of the color reduction factor

$$
\begin{aligned}
& \frac{1}{N} \frac{d^{2} N}{d p_{T}^{2}}=\omega\left(\alpha, p_{0}, p_{T}\right)=\frac{(\alpha-1)(\alpha-2)}{2 \pi p_{0}^{2}} \frac{p_{0}^{\alpha}}{\left(p_{T}+p_{0}\right)^{\alpha}} \\
& \left\langle p_{T}\right\rangle=p_{0} \frac{2}{\alpha-3} \quad p_{0} \rightarrow p_{0} \sqrt{\frac{F(\zeta)}{F\left(G m_{M}\right)}} \\
& \left\langle p_{T}\right\rangle=p_{0} \sqrt{\frac{F(\zeta)}{F(\zeta H M)}} \frac{2}{\alpha-3}
\end{aligned}
$$

$\varepsilon_{i}=\frac{3}{2} \frac{\frac{d N_{c}}{d y}\left\langle p_{T}\right\rangle}{S_{N} \tau_{p r o}}$

where S_{n} is the nuclear overlap area, $\tau_{p r o}$ is the production time for a boson gluon which we will replace by $\tau=2.405 \bar{h} /<m_{t}>$ the propagation time of the parton given in fermis. The results are

Shear viscosity / entropy

- In the relativistic kinetic theory

$$
\frac{\eta}{s} \simeq \frac{T \lambda_{f p}}{5}
$$

- $\lambda_{f p} \sim \frac{1}{n \sigma_{t r}}$ is the mean free path
- $n=\frac{N_{\text {saurces }}}{S_{N} L}$ is the density of the effective number of sources per unit volume
- We considered $\frac{N_{\text {sources }}}{S_{N L}} \sigma_{t r}=\left(1-e^{-\zeta^{t}}\right) / L$ and $L=1 f m$ the longitudinal extension of the source.

$$
\frac{\eta}{s}=\frac{T L}{5\left(1-e_{5}^{-\xi^{\prime}}\right)}
$$

On the right Shear viscosity over entropy ratio for 7 TeV high multiplicity classes corresponding to $N_{\text {track }}=40$ to $N_{\text {track }}=131$, with the $T_{c}=154 \pm 9$. In here we have plot the corresponding value corresponding to an approximate number of tracks $\sim 155 \pm 7$ corresponding to high multiplicity event in 13 TeV . Left side calculations the T_{c} value was taken as 167 MeV for heavy ion B . K . Srivastava, Eur. Phys. J. C72.

pPb collisions at 5.02 TeV

B. B. Abelev [ALICE Collaboration], Phys. Lett. B 728 (2014) 25

pPb collisions at 5.02 TeV

Data taken from: http://hepdata.cedar.ac.uk/view/ins1244523

Summary
The SPM gives a indication of the geometric phase transition for the highest multiplicity events on $p-p$ and $p-P b$ collisions.

The SPM can give a qualitative explanation of the collective effects seen on small systems.
I. Bautista, A. Fernandez, P. Ghosh, Phys. Rev D 92 (2015) 7, 0172504

Thank you !!!

$\sqrt{s}(\mathrm{TeV})$	a	p_{0}	α
.9	23.29 ± 4.48	$1.82 \pm .54$	9.40 ± 1.80
2.76	22.48 ± 4.20	$1.54 \pm .46$	7.94 ± 1.41
7	33.12 ± 9.30	$2.32 \pm .88$	9.78 ± 2.53

TABLE I. Parameters of the transverse momentum distribution (9) in $p p$ collisions.

\sqrt{s}	$7(\mathrm{TeV})$	$2.76(\mathrm{TeV})$	$900(\mathrm{GeV})$
$d N / d \eta$	$\zeta_{H M}$	$\zeta_{M H}$	$\zeta_{M H}$
13.33	$0.77 \pm .13$	$1.30 \pm .15$	$1.75 \pm .15$
17.33	$1.42 \pm .15$	$2.09 \pm .18$	$2.49 \pm .19$
21.0	$1.98 \pm .18$	$.78 \pm .21$	$3.13 \pm .23$
25	$2.53 \pm .21$	$3.52 \pm .27$	$3.55 \pm .28$
28.67	$3.02 \pm .23$	$4.03 \pm .31$	
32.67	$3.42 \pm .26$	$4.33 \pm .36$	
36.33	$3.89 \pm .30$		
40.	$4.40 \pm .36$		
43.67	$4.98 \pm .40$		

Table: Corresponding $d N / d \eta$ and $\zeta_{H M}$, and R for the $\left\langle N_{\text {track }}\right\rangle$ in pp collisions high multiplicity clases

The single string average transverse momentum $\left\langle p_{t}\right\rangle_{1}$ is calculated at $\zeta_{c}=1.2$ and $\zeta_{c}=1.5$ with the universal chemical freeze out temperature of $167.7 \pm 2.6 \mathrm{MeV}$ and $154 \pm 9 \mathrm{MeV}$ both values corresponding to the old and new LQCD results from the HotLQCD collaboration. The values for the corresponding ζ^{t} and T_{c} obtained:

$$
\begin{aligned}
& p_{T 1}=190.25 \pm 11.12 \text { for } \zeta^{t}=1.2 \text { and } T_{c}=154 \pm 9 \\
& p_{T 1}=184.76 \pm 7.80 \text { for } \zeta^{t}=1.5 \text { and } T_{c}=154 \pm 9 \\
& p_{T 1}=207.18 \pm 3.21 \text { for } \zeta^{t}=1.2 \text { and } T_{c}=167.7 \pm 2.3 \\
& p_{T 1}=201.19 \pm 3.12 \text { for } \zeta^{t}=1.2 \text { and } T_{c}=167.7 \pm 2.3 .
\end{aligned}
$$

We compare the obtained temperature T_{i} at the measured value of $\zeta=2.88$ before the expansion of the QGP with the measured $T_{i}=221 \pm 19_{\text {stat }} \pm 19_{\text {sys }} \mathrm{MeV}$ from the enhanced direct photon experiment measured by PHENIX. All the values are consistent with the previously used value of $\sim 200 \mathrm{MeV}$ in the calculation of percolation transition of temperature with the exception of the one obtained at $T_{c}=154$ with $\zeta_{c}=1.5$.
A. Bazavov et al., Phys. Rev. D80, $014504\left(\mathrm{ROO}_{34}\right.$ A. Adare et al., (PHENIX Collaboration), Phys. Rev. Lett. 104, 132301 (2010).

