

Towards 3 particle correlations in the Color Glass Condensate framework

Martin Hentschinski martin.hentschinski@gmail.com

IN COLLABORATION WITH

A. Ayala, J. Jalilian-Marian, M.E. Tejeda Yeomans,

QCD Challenges at the LHC: from pp to AA (Taxco, 18.-22. Jan. 2016)

$$e^{-} + p[A] \rightarrow e^{-} + X = \gamma^{*} + p \rightarrow X \text{ (up to QED corrections)}$$

$$e^{-} + p[A] \rightarrow e^{-} + X = \gamma^{*} + p \rightarrow X \text{ (up to QED corrections)}$$

$$y = \frac{q \cdot p}{k \cdot p} \text{ "inelasticity"}$$

$$Q^{2} = -q^{2} = -(k - k')^{2} \text{ "resolution"}$$

$$Q^{2} = -q^{2} = -(k - k')^{2} \text{ "resolution"}$$

$$P^{2} = -q^{2} = -(k - k')^{2} \text{ "resolution"}$$

$$P^{2} = -q^{2} = -(k - k')^{2} \text{ "resolution"}$$

$$P^{2} = 10 \text{ GeV}^{2}$$

$$P^{2} = \frac{2}{2p_{2}p_{1}} \frac{q}{2}$$

$$P^{2} = \frac{2}{2p_{2}p_{1}} \frac{q}{2} \text{ momentum carried by struck quark}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ \left[1 + (1 - y)^{2} \right] F_{2}(x_{B_{1}}, Q^{2}) - y^{2} F_{L}(x_{B_{1}}, Q^{2}) \right\}$$

$$P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}} \left\{ P^{2} = \frac{2\pi\alpha^{2}}{x_{B_{1}} Q^{4}$$

The proton at high energies: saturation

theory considerations:

- effective finite size 1/Q of partons at finite Q^2
- at some $x \ll 1$, partons 'overlap' = recominbation effects
- turning it around: system is characterized by <u>saturation</u> <u>scale</u> Q_s
- grows with energy $Q_s \sim x^{-\Delta}$, $\Delta > 0$ & can reach in principle perturbative values $Q_s > 1 {\rm GeV}$

High gluon densities & heavy ions

Expect those effects to be even more enhanced in boosted nuclei:

- Believed: heavy ion collisions at RHIC, LHC
 = collisions of two Color Glass Condensate
- but what are the correct initial conditions?

CGC and long-range rapidity correlations in high multiplicity events

- high multiplicities \rightarrow screening of color charges introduces \rightarrow saturation scale
- high & saturated gluon densities (HERA fit with modified initial saturation scale, higher correlators from "Gaussian/dilute approximation")
- take limit $p_T/Q_S \ll 1$, 2 contributions: "glasma" and "jet" graph AA: glasma dominates, pp, pA also jet graph (α_S suppressed)

CGC & Ridges [Dusling, Venugopalan, Phys.Rev. D87 (2013) 9, 094034; 5, 051502]

Fig. 33. Long range $(2 \le \Delta \eta \le 4)$ per-trigger yield of charged hadrons as a function of $\Delta \phi$ for p-p collisions at $\sqrt{s} = 7$ TeV. Data points are from the CMS collaboration. The curves show the results for $Q_0^2(x = 10^{-2}) = 0.840$ GeV² and $Q_0^2(x = 10^{-2}) = 1.008$ GeV².

N_{trig} dN^{pair}/dΔφ - C_{ZYAM}

turation o we know really about saturated gluons? — DIS on a proton at HERA

factorisation into photon wave function ψ ($\chi^* \rightarrow$ qqbar) & color dipole \mathcal{N} (~dense gluon field)

achieve a good description of combined (= high precision!) HERA data through rcBK fit

[Albacete, Armesto, Milhano, Quiroga, Salgado, EPJ C71 (2011) 1705]

 γ^*

IIMWLK

But ... data also described by pdf-fits (=DGLAP) — intrinsically dilute (virtual photon interacts with single quark, gluon)

... and also (collinear improved) NLO BFKL evolution can fit data [MH, Salas, Sabio Vera; PRD 87 (2013) 7, 076005]

What we know and what we don't know

- extracted saturation scales at HERA not so large (0.75-2 GeV²) + DGLAP fits initial conditions at small Q²
- description of HERA data by saturation AND DGLAP not really a contradiction, but also not yet definite proof for saturation, cannot claim complete control
- can use HERA fits (*e.g.* rcBK) in *pA*, *AA*, high multiplicity events through scaling of (initial) saturation scale $Q_s(A) = Q_s^{HERA} \cdot A^{1/3}$, but rely on assumptions/arguments
- in general: initial conditions not controlled on the level of accuracy as *e.g.* in pp through conventional pdfs

A collider to search for a definite Answer:

the world's first eA collider: will allow to probe heavy nuclei at small x (using 16GeV electrons on 100GeV/u ions)

Brookhaven National Laboratory: supplement RHIC with Electron Recovery Linac (eRHIC)

Jefferson Lab: supplement CEBAF with hadron accelerator (MEIC)

2015: endorsed by Nuclear Science Advisory Committee (NSAC) As highest priority for new Facility construction in US Nuclear Science Long Range plan

+ plans for LHeC etc.

Tasks for theory...

so far:

- still rely often on models (even though an sophisticated level) such as IPsat, bCGC → x-dependence = assumption + fit
- fits with evolution (rcBK): LO BK + running coupling corrections, coefficients at LO, with a few NLO exceptions (inclusive DIS, single inclusive jet in pA)

recent progress:

NLO corrections for evolution [Balitsky, Chirilli; PRD 88 (2013) 111501, PRD 77 (2008) 014019];
 [Kovner,Lublinsky, Mulian; PRD 89 (2014) 6, 061704] KNOWN & Studied + resummed & USed for first HERA fit [lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos, PLB750 (2015) 643]

missing:

→ NLO corrections for coefficients of exclusive observables — provide strongest constraints on saturation

Example 1: Diffractive DIS at HERA

higher twist effects at small Q² as signal for saturation

[Motyka, Slominski, Sadzikowski, Phys.Rev. D86 (2012) 111501]

Theoretical Limitations

- large M_X requires qq̄q →also qq̄ at 1-loop since inclusive — so far modelled using eikonal approximation [C. Marquet, Phys. Rev. D76, 094017 (2007)]
- color dipole (=target interaction): truncation to certain twist of GBW model
- motivated through "reggeization" in pQCD, but arbitrariness remains ...

A popular observable in the EIC program: Di-Hadron De-correlation in DIS

Saturation (CGC): gluon k⊤ peaked at saturation scale - expect de-correlated di-hadrons

Potential limitations

- also here the NLO corrections are missing (qqq + qq at 1-loop)
- soft radiative corrections have been evaluated at leading order [Mueller, Xiao, Yuan, Phys.Rev. D88 (2013) 11, 114010]

comparison of *ep* and *eA* shows at first clear signal

.... but Sudakov factors have a big effect

.... signal remains, but inclusion of higher order corrections necessary for precise distinction of different approaches

depletion of away side peak in central collisions described by CGC

Au collisions at RHIC

theory:

involves higher correlator ('quadrupole', not only dipole) — state-of-the art: calculate in Gaussian/ dilute approximation from dipole [Lappi, Mantysaari, Nucl.Phys. A908 (2013) 51-72]

 π^{0} azimuthal correlation compared to the PHENIX *d-Au* result (0.5GeV<pass<0.75 GeV, 3<y1,y2<3.8). solid line: $Q_{S0}^{2} = 1.51 \text{ GeV}^{2}$, dashed line: $Q_{S0}^{2} = 0.72 \text{ GeV}^{2}$

2 & 3 forward jets in pPb@LHC

Theory description: use dilute approximation

gluon distribution obeys BK evolution

- use hybrid formalism: proton through collinear pdfs, Pb saturated gluon
- dilute expansion |p_{1t}+p_{2t}|»Qs
 (2 jets: complete LO matrix element known in principle, 3 jets: unknown)
- hard process: only single scattering with glue field, saturation through k_T dependence

the presented studies have certain limitations

 \circ uncontrolled higher order corrections (only LO in α_{S})

dilute expansion p_{1t}+p_{2t}|»Q_S (=probe the tail of saturation, but appropriate in certain kinematics)

need to increase theory precision for establishing saturation + extracting gluon distributions (important for precision at EIC but also LHC, HERA analysis)

our project: calculate

(NEW: NLO from momentum space)

- A. tri-particle production at LO (new for DIS, pA 1st complete) expect more stringent tests of CGC through more complex final state
- B. di-particle production at NLO (3 partons a subset!) reduce uncertainties + possibly identify overlap region between collinear factorisation and saturation physics

As a first step: limit to DIS (electron-nucleus i.e. γ^*A collisions) but derive important general results on the way \rightarrow first step for future *pPb* calculation in "hybrid-"formalism

Theory: quarks, gluons in the presence of high gluon densities

Theory: Propagators in background field

use light-cone gauge, with k-=n-·k, (n-)2=0, n-~ target momentum

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], ...

interaction with the background field:

$$\begin{array}{rcl} & p & & \\$$

$$V(\boldsymbol{z}) \equiv V_{ij}(\boldsymbol{z}) \equiv \operatorname{P} \exp ig \int_{-\infty}^{\infty} dx^{-} A^{+,c}(x^{-}, \boldsymbol{z}) t^{c}$$
$$U(\boldsymbol{z}) \equiv U^{ab}(\boldsymbol{z}) \equiv \operatorname{P} \exp ig \int_{-\infty}^{\infty} dx^{-} A^{+,c}(x^{-}, \boldsymbol{z}) T^{c}$$

strong background field resummed into path ordered exponentials (Wilson lines)

in contrast to dilute expansion: every line interacts with dense gluon field

Difference between DIS and LHC calculation: 3 parton production

- Feynman diagrams do not yet contain interaction with background field: each internal & each external coloured line to be split into 2 terms (-1)
- DIS the preferred playground for theory developments

1 extra parton — can cause a lot of work! (even for DIS process) di-hadrons at LO: paper & pencil calculation *e.g.*[Gelis, Jalilian-Marian, PRD67, 074019 (2003)]

on X-sec. level: up to 16 Gamma matrices in a single Dirac trace

- \rightarrow 15! = 1307674368000 individual terms (not all non-zero though)
 - necessary to achieve (potential) cancelations of diagrams BEFORE evaluation
 - require automatization of calculation (= use of Computer algebra codes)

Reduce # of Diagrams

Configuration space: cuts at x = 0

- diagrams to configuration space → momentum delta function as integral at each vertex + four momentum integral at each internal internal line
- Feynman propagator in configuration space

$$\begin{split} \Delta_F^{(0)}(x) &= \int \frac{d^d p}{(2\pi)^d} \frac{i \cdot e^{-ip \cdot x}}{p^2 - m^2 + i0} = \int \frac{dp^+}{(2\pi)} \int \frac{dp^- d^{d-2} \mathbf{p}}{(2\pi)^{d-1}} \frac{e^{-ip^- x^+ + i\mathbf{p} \cdot x}}{2p^-} \cdot \frac{i \cdot e^{-ip^+ x^-}}{p^+ - \frac{\mathbf{p}^2 + m^2 - i0}{2p^-}} \\ &= \int \frac{dp^- d^{d-2} \mathbf{p}}{(2\pi)^{d-1}} \frac{e^{-ipx}}{2p^-} \left[\theta(p^-) \theta(x^-) - \theta(-p^-) \theta(-x^-) \right]_{p^+ = \frac{\mathbf{p}^2 + m^2}{2p^-}} \end{split}$$

• divide
$$x_i^-$$
 integral $\int_{-\infty}^{\infty} dx_i^- \rightarrow \int_{-\infty}^{0} dx_i^- + \int_{0}^{\infty} dx_i^- \rightarrow each of our diagrams cut by a line separating positive & negative light-cone time$

 s-channel kinematics [k⁻=p₁⁻ +p₂⁻ + ..., all positive] → only s-channel type cuts possible (~vertical cuts)

not altered through interaction

recall: interaction placed at slice z⁻=0

$$A^{+,a}(z^-, \boldsymbol{z}) = \alpha^a(\boldsymbol{z})\delta(z^-)$$

 \rightarrow interaction must be always placed at a z⁻=0 cut of the diagram. Note: this applies equally to configuration and momentum space

• evaluates already sum of a large fraction of diagrams (~50%) to zero

forbidden configurations: cannot be accommodated by vertical (s-channel type) cut

Can we Do better? more constraints

consider complete configuration space propagator (free + interacting part)

$$S_F(x,y) = \int \frac{d^d p}{(2\pi)^d} \frac{d^d q}{(2\pi)^d} e^{-ipx} \left[\tilde{S}_F^{(0)}(p)(2\pi)^d \delta^{(d)}(p-q) + \tilde{S}_F^{(0)}(p)\tau_F(p,q)\tilde{S}_F^{(0)}(q) \right] e^{iqy}$$

obtain free propagation for

- x⁻,y⁻<0 ("before interaction")
- x⁻,y⁻>0 ("after interaction")

 $z^{-} = 0$

propagator proportional to complete Wilson line V (fermion) or U (gluon) if we cross cut at light-cone time 0

- ▶ no direct translation to momentum space adding free propagation & interaction → mixing of different mom. space diagrams
- but strong constraints on the structure of the full result

Configuration Space predicts which Operators have non-zero coefficients

momentum space: necessary coefficients from only 4 (instead of 16) diagrams (cancelation of all other contributions verified by explicit calculations)

virtual corrections: similar result,

necessary coefficients from 8 (instead of 32) diagrams

Structure of Wilson correlators

for 3 particle production in DIS

Wilson lines build correlators = different gluon distributions (in general more than one)

- *e.g.* inclusive DIS at LO: target interaction through color dipole $\mathcal{N}(\mathbf{r}, \mathbf{b}) = \frac{1}{N_c} \operatorname{Tr} \left(1 - V(\mathbf{x}) V^{\dagger}(\mathbf{y}) \right)$ $\mathbf{r} = \mathbf{x} - \mathbf{y}$ $\mathbf{b} = \frac{1}{2} (\mathbf{x} + \mathbf{y})$
- 2 parton final state: new correlator the quadrupole $\mathcal{N}^{(4)}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{x}_4) = \frac{1}{N_c} \operatorname{Tr} \left(1 - V(\boldsymbol{x}_1) V^{\dagger}(\boldsymbol{x}_2) V(\boldsymbol{x}_3) V^{\dagger}(\boldsymbol{x}_4) \right)$
- for large N_c at most quadrupoles in n-particle production; finite N_c n-particle ≜ n correlators
 [Dominguez, Marquet, Stasto, Xiao; Phys.Rev. D87 (2013) 034007]

isolate Wilson line & color generators of amplitudes

+ square them (Mathematica)

+ express adjoint Wilson lines in terms of fundamental $U^{ab}(z_t) = \operatorname{tr} \left[t^a V(z_t) t^b V^{\dagger}(z_t) \right]$ + make use of Fiery identities $\operatorname{tr} \left[t^a A t^a B \right] = \frac{1}{2} \operatorname{tr} \left[A \right] \operatorname{tr} \left[B \right] - \frac{1}{2N_c} \operatorname{tr} \left[A B \right]$ $\operatorname{tr} \left[t^a A \right] \operatorname{tr} \left[t^a B \right] = \frac{1}{2} \operatorname{tr} \left[A B \right] - \frac{1}{2N_c} \operatorname{tr} \left[A \right] \operatorname{tr} \left[B \right]$

$$\begin{aligned} \operatorname{tr} \left[W_{1}W_{1}^{*}\right] &= \frac{\left(N_{c}^{2}-1\right)S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{2N_{c}} \\ \operatorname{tr} \left[W_{1}W_{2}^{*}\right] &= \frac{1}{4} \left(S_{D}(z_{t}',x_{t}')S_{Q}(x_{t},z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{1}W_{3}^{*}\right] &= \frac{1}{2} \left(S_{D}(x_{t},y)S_{D}(y_{t}',x_{t}') - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{1}W_{4}^{*}\right] &= \frac{1}{4} \left(S_{D}(z_{t}',x_{t}')S_{Q}(x_{t},z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{2}W_{1}^{*}\right] &= \frac{1}{4} \left(S_{D}(x_{t},z)S_{Q}(z_{t},x_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{2}W_{2}^{*}\right] &= \frac{1}{8} \left(S_{Q}(x_{t},x_{t}',z_{t}',z_{t})S_{Q}(z,z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{2}W_{3}^{*}\right] &= \frac{1}{4} \left(S_{D}(z,y_{t})S_{Q}(x_{t},x_{t}',y_{t}',z) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{2}W_{4}^{*}\right] &= \frac{1}{8} \left(S_{Q}(x_{t},x_{t}',z_{t}',z)S_{Q}(z_{t},z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{3}W_{1}^{*}\right] &= \frac{1}{2} \left(S_{D}(x_{t},y_{t})S_{D}(y_{t}',x_{t}') - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{3}W_{2}^{*}\right] &= \frac{1}{4} \left(S_{D}(y_{t}',z_{t}')S_{Q}(x_{t},x_{t}',z_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{3}W_{4}^{*}\right] &= \frac{1}{4} \left(S_{D}(x_{t},z_{t})S_{Q}(z,x_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{4}W_{1}^{*}\right] &= \frac{1}{4} \left(S_{D}(x_{t},z_{t})S_{Q}(z,x_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{4}W_{3}^{*}\right] &= \frac{1}{4} \left(S_{Q}(x_{t},x_{t}',z_{t}',z_{t})S_{Q}(z,z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{4}W_{3}^{*}\right] &= \frac{1}{8} \left(S_{Q}(x_{t},x_{t}',z_{t}',z_{t})S_{Q}(z,z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{4}W_{4}^{*}\right] &= \frac{1}{8} \left(S_{Q}(x_{t},x_{t}',z_{t}',z_{t})S_{Q}(z,z_{t}',y_{t}',y_{t}) - \frac{S_{Q}(x_{t},x_{t}',y_{t}',y_{t})}{N_{c}}\right) \\ \operatorname{tr} \left[W_{4}$$

DIS: dipole and quadrupole sufficient even at finite *N*_C

altogether 7 independent terms

with

$$S_D(x_{1,t}, x_{2,t}) = \operatorname{tr} \left[V(x_{1,t}) V^{\dagger}(x_{2,t}) \right]$$

$$S_Q(x_{1,t}, x_{2,t}, x_{3,t}, x_{4,t}) = \operatorname{tr} \left[V(x_{1,t}) V^{\dagger}(x_{2,t}) V(x_{3,t}) V^{\dagger}(x_{4,t}) \right]$$

Loop integrals

something slightly strange:

Loop Integrals also for Real corrections

technical reason:

- momentum space amplitudes obtained from field correlators during LSZ reduction procedure
- integration over coordinates at vertices yields delta functions which evaluate momentum integrals trivially
- here: coordinate dependence of background field → some of the delta functions absent

intuitive picture:

background field = t-channel gluons interacting with the target

→ naturally provide a loop which is factorized & (partially) absorbed into the projectile in the high energy limit

3 particle production:

a 1-loop and a 2-loop topology

k₁ and k₂ are loop momenta new complication: exponentials/Fourier factors

conventional: *e.g.* k₁⁺ integration by taking residues, then transverse integrals particular for 2 loop case: complicated transverse integrals

developed a new technique

★ complete exponential factors to 4 dimensions

★ evaluate integral using "standard" momentum space techniques

a 1-loop example:

$$I(p_1, p_2) = \int \frac{d^d k_1}{i\pi^{d/2}} \frac{1}{[k_1^2][(l-k_1)^2]} e^{ix_t(\cdot k_{1,t}-p_{1,t})} e^{-iy_t \cdot (k_{1,t}+p_{2,t})} (2\pi)^2 \delta(p_1^- - k_1^-) \delta(l^- - k_1^- - p_2^-)$$

start with integral which contains

- delta functions
- transverse exponential factors

$$I(p_1, p_2) = 2\pi\delta(l^- - p_1^- - p_2^-)e^{-iy_t \cdot (p_{1,t} + p_{2,t})} \int dr^+ \int dr^- \delta(r^+) \int \frac{d^d k_1}{i\pi^{d/2}} \frac{1}{[k_1^2][(l-k_1)^2]} e^{ir \cdot k_1}$$

- introduce relative coordinate r=x-y
- represent delta function by integral
- introduce dummy integral over r+

→obtain 4(d) dimensional integral next step:

$$\left(\frac{i}{k^2 - m^2 + i0}\right)^{\lambda} = \frac{1}{\Gamma(\lambda)} \int_0^{\infty} d\alpha \, \alpha^{\lambda - 1} e^{i\alpha(k^2 - m^2 + i0)}$$

Schwinger/α-parameters

complete square in exponent, Wick rotation, Gauss integral

▶ reconstruct delta functions to evaluate (some) of the α -parameter integrals

to facilitate these steps for 2, 3 loops (virtual!): "developed" Mathematica package ARepCGC; implements necessary text-book methods [V. Smirnov, Springer 2006]

Complete result in terms of 2 functions

$$\begin{split} f_{(a)}(\bar{Q}^2, -r^2) &= \int_0^\infty d\lambda \lambda^{a-1} e^{-\lambda \bar{Q}^2} e^{\frac{r^2}{4\lambda}} = 2^{1-a} \left(\frac{-r^2}{\bar{Q}^2}\right)^{a/2} K_a \left(\sqrt{\bar{Q}^2(-r^2)}\right) \\ h_{(a,b)}(\bar{Q}^2, r_1^2, r_3^2) &= \int_0^\infty d\alpha \alpha^{a-1} e^{-\alpha \bar{Q}^2} e^{\frac{r_1^2}{4\alpha}} \cdot \int_0^{\bar{\rho}} d\rho \rho^{b-1} e^{\frac{r_3^2}{4\alpha\rho}} \\ &= 2^{1-a} \int_0^{\bar{\rho}} d\rho \rho^{b-a/2-1} \left(\frac{-\rho r_1^2 - r_3^2}{\bar{Q}^2}\right)^{a/2} K_a \left[\sqrt{\bar{Q}^2 \cdot \left(-r_1^2 - \frac{r_3^2}{\rho}\right)}\right] \end{split}$$

- K_a(x) modified Bessel function of 2nd kind (Macdonald function)
- ▶ require $f_{(a)}$ for a=0,-1 and $h_{\{a,b\}}$ for a=0,-1, -2 and b=0, -1
- further reduction possible due to integration by parts identities
- h{a,b} can be directly evaluated for b=-1; general case into infinite sum over Bessel functions; numerics: keeping integral might be most stable
- \gg massive case trivial as long one accepts one remaining integration for $h_{\{a,b\}}$

From Gamma matrices to cross-sections

Dirac traces from Computer Algebra Codes

- possible to express elements of Dirac trace in terms of scalar, vector and rank 2 tensor integrals
- Evaluation requires use of computer algebra codes; use 2 implementations: FORM [Vermaseren, math-ph/0010025] & Mathematica packages FeynCalc and FormLink
- result (3 partons) as coefficients of "basis"-functions f_(a) and h_(a,b); result lengthy (~100kB), but manageable
- currently working on further simplification through integration by parts relation between basis function (work in progress)

Next step: complete NLO corrections

- integrate one of the produced particles \rightarrow additional divergences
 - rapidity divergence: JIMWLK evolution of dipoles & quadrupoles (and their products)
 - high M_X diffraction: require extension of JIMWLK to exclusive reactions [Hentschinski, Weigert, Schäfer, Phys.Rev. D73 (2006) 051501]
 - soft singularities cancel between real & virtual
- for $\gamma^* \rightarrow$ hh + X: final state collinear divergences: fragmentation functions
- for q → jj + X etc: initial state collinear divergences: parton distribution functions + need to take care of potential soft factors

work in progress

related work:

[Boussarie, Grabovsky, Szymanowski, Wallon, JHEP1409, 026 (2014)] [Balitsky, Chirilli, PRD83 (2011) 031502, PRD88 (2013) 111501] [Beuf, PRD85, (2012) 034039]

Summary

- CGC is a systematic approach to high gluon densities in high energy collisions used to fit a wealth of data (ep, pp, pA, AA)
- LO CGC works (sometimes too) well; qualitative/semiquantitative description of data requires NLO
- to arrive at a precise picture of saturated gluon densities we need precision — both experiment and theory
- Di-jet/-hadron angular correlations offer a unique probe of the CGC (both *eA* and *pA*)
- Tri-jet/-hadron should be even more discriminatory

Summary

- developed techniques (diagram reduction, integrals) might have been available before, but never been exploited in a systematic way for this kind of calculation
- proof of concept for NLO momentum space calculation advantage: benefit from standard techniques for higher orders in QCD (important: soft- and collinear singularities!)
- concentrate on DIS, but results (integrals, codes) extends beyond →3-jets, NLO correction for saturation/ CGC observables in *e.g.* pA at RHIC/LHC

Danke!

Electron-nucleus/-on scattering

knowldege of scattering enery + nucleon mass
 + measure scattered electron → control kinematics

Photon virtuality $Q^2 = -q^2$

Resolution $\lambda \sim \frac{1}{Q}$

 $\begin{array}{l} \mbox{Mass of system } X \\ W = (p+q)^2 \\ = M_N^2 + 2p \cdot q - Q^2 \end{array} \end{array}$

Bjorken
$$\boldsymbol{x} = \frac{Q^2}{2p \cdot q}$$

Inelasticity $y = \frac{2p \cdot q}{2p \cdot k}$

momentum vs. configuration

Space			
	conventional	inclusion of finite masses	intuition:
	(make use of	(charm mass!)	with Lorentz
momentum space	well explored	complication, but doable	lose intuitive picture at first -> large # of
configuration space	poorly explored	very difficult	many diagrams automatically zero
our approach:			
work in momentum space, but exploit relation to			
configuration space to set a large fraction of all			
diagrams to zero			

the IC-Time Slice x⁻=0: 'cuts' through diagrams

Searching for saturation effects

