

Towards 3 particle correlations in the Color Class Condensate framework

Martin Hentschinski
 martin.hentschinski@gmail.com

IN COLLABORATION WITH

A. Ayala, J. Jalilian-Marian, M.E. Tejeda Yeomans,

QCD Challenges at the LHC: from pp to AA
(Taxco, 18.-22. Jan. 2016)

DIS at HERA: parton Distribution functions

HERA collider (92-07): Deep Inelastic Scattering (DIS) of of electrons on protons

H1 and ZEUS

> Photon virtuality $Q^{2}=-q^{2}$
> Bjorken $\boldsymbol{x}=\frac{Q^{2}}{2 p \cdot q}$
gluon $g(x)$ and sea-quark $S(x)$ distribution like powers $\sim x^{-\lambda}$ for $x \rightarrow 0$
\rightarrow invalidates probability interpretation if continued forever (integral over x diverges)

\rightarrow at some \times, new QCD dynamics must set in

The proton at high energies: saturation

theory considerations:

- effective finite size $1 / Q$ of partons at finite Q^{2}
- at some $x \ll 1$, partons 'overlap' $=$ recominbation effects
- turning it around: system is characterized by saturation scale Q_{s}
- grows with energy $Q_{s} \sim x^{-\Delta}$, $\Delta>0$ \& can reach in principle perturbative values $Q_{s}>1 \mathrm{GeV}$

High gluon densities \& heavy ions

Expect those effects to be even more enhanced in boosted nuclei:

- Believed: heavy ion collisions at RHIC, LHC = collisions of two Color Glass Condensate
- but what are the correct initial conditions?

CGC and long-range rapidity correlations in high multiplicity events

- high multiplicities \rightarrow screening of color charges introduces \rightarrow saturation scale
- high \& saturated gluon densities (HERA fit with modified initial saturation scale, higher correlators from "Gaussian/dilute approximation")
- take limit $\mathrm{p}_{\mathrm{T}} / \mathrm{Q}_{\mathrm{S}}<1,2$ contributions: "glasma" and "jet" graph AA: glasma dominates, pp, pA also jet graph ($\boldsymbol{\alpha}_{\mathrm{S}}$ suppressed)

CGC \& Ridges

Fig. 33. Long range ($2 \leq \Delta \eta \leq 4$) per-trigger yield of charged hadrons as a function of $\Delta \phi$ for p-p collisions at $\sqrt{s}=7 \mathrm{TeV}$. Data points are from the CMS collaboration. The curves show the results for $Q_{0}^{2}\left(x=10^{-2}\right)=0.840 \mathrm{GeV}^{2}$ and $Q_{0}^{2}\left(x=10^{-2}\right)=1.008 \mathrm{GeV}^{2}$.

works rather good, some say too good ...

What do we know really about saturated gluons? - DIS on a proton at HERA

$\sigma_{L, T}^{\gamma^{*} A}\left(x, Q^{2}\right)=2 \sum_{f} \int d^{2} \boldsymbol{b} d^{2} \boldsymbol{r} \int_{0}^{1} d z\left|\psi_{L, T}^{(f)}\left(r, z ; Q^{2}\right)\right|^{2} \mathcal{N}(x, \boldsymbol{r}, \boldsymbol{b})$
factorisation into photon wave function ψ ($\gamma^{\star} \rightarrow$ qqbar) \& color dipole \mathcal{N} (\sim dense gluon field)
color dipole \mathcal{N} : all information about gluon distribution + follows non-linear evolution in $\operatorname{In}(1 / x)$ [JIMWLK or BK]

V
achieve a good description of combined (= high precision!)

[Albacete, Armesto, Milhano,Quiroga, Salgado, EPJ C71 (2011) 1705]

What we know and what we don't know

- extracted saturation scales at HERA not so large (0.75-2 GeV²) + DGLAP fits initial conditions at small Q2
- description of HERA data by saturation AND DGLAP not really a contradiction, but also not yet definite proof for saturation, cannot claim complete control
- can use HERA fits (e.g. rcBK) in $p A, A A$, high multiplicity events through scaling of (initial) saturation scale $Q_{s}(A)=Q_{s}{ }^{\text {HERA }} \cdot A^{1 / 3}$, but rely on assumptions/arguments
- in general: initial conditions not controlled on the level of accuracy as e.g. in pp through conventional pdfs

A collider to search for a definite Answer:

the world's first eA collider: will allow to probe heavy nuclei at small x (using 16 GeV electrons on $100 \mathrm{GeV} / \mathrm{u}$ ions)

Brookhaven National Laboratory: supplement RHIC with Electron Recovery Linac (eRHIC)

Jefferson Lab: supplement CEBAF with hadron accelerator (MEIC)

2015: endorsed by Nuclear Science Advisory Committee (NSAC) As highest priority for new Facility construction in US Nuclear Science Long Range plan

Tasks for theory...

so far:

- still rely often on models (even though an sophisticated level) such as IPsat, bCGC \rightarrow x-dependence $=$ assumption + fit
- fits with evolution (rcBK): LO BK + running coupling corrections, coefficients at LO, with a few NLO exceptions (inclusive DIS, single inclusive jet in pA)
recent progress:
- NLO corrections for evolution [Balitsky, Chirilli; PRD 88 (2013) 111501, PRD 77 (2008) 014019];
[Kovner,LLublinsky, Mulian; PRD 89 (2014) 6, 061704] Known \& studied + resummed \& used for first HERA fit [lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos, PLB750 (2015) 643]
missing:
\rightarrow NLO corrections for coefficients of exclusive observables
- provide strongest constraints on saturation

Example 1: Diffractive DIS at HERA

higher twist effects at small Q^{2} as signal for saturation
[Motyka, Slominski, Sadzikowski, Phys.Rev. D86 (2012) 111501]

Theoretical Limitations

- large Mx_{x} requires $\mathrm{q} \overline{\mathrm{q}} \mathrm{g} \rightarrow$ also $\mathrm{q} \bar{q}$ at 1 -loop since inclusive - so far modelled using eikonal approximation $[$ [c. Marquat, phys, Rev. D76, 098077 (2007] $]$
- color dipole (=target interaction): truncation to certain twist of GBW model
- motivated through "reggeization" in pQCD, but arbitrariness remains ...

A popular observable in the EIC program: Di-Hadron De-correlation in DIS

gluon k_{T} peaked at $\mathrm{k}_{T}=0$

- expect di-hadrons back-to-back

Saturation (CGC): gluon k_{T} peaked at saturation scale

- expect de-correlated di-hadrons

Potential limitations

- also here the NLO corrections are missing (q̄̄g + qव̄ at 1-loop)
- soft radiative corrections have been evaluated at leading order [Mueller, Xiao, Yuan, Phys.Rev. D88 (2013) 11, 114010]
comparison of ep and eA shows at first clear signal
.... but Sudakov factors have a big effect
.... signal remains, but inclusion of higher order corrections necessary for precise distinction of different approaches

[Zheng,Aschenauer, Lee, Xiao, PRD89 (2014)7, 074037]

CGC and d-Au collisions at RHIC

signal in d-Au collisions at RHIC:
depletion of away side peak in central collisions described by CGC

theory: involves higher correlator ('quadrupole', not only dipole) — state-of-the art: calculate in Gaussian/ dilute approximation from dipole [Lappi, Mantysaari, Nucl.Phys. A908 (2013) 51-72]
π_{0}^{0} azimuthal correlation compared to the PHENIX d-Au result ($0.5 \mathrm{GeV}<\mathrm{p}^{\text {ass }}<0.75 \mathrm{GeV}, 3<y_{1}, \mathrm{y}_{2}<3.8$). solid line: Qso $^{2}=1.51 \mathrm{GeV}^{2}$, dashed line: $Q_{s o}{ }^{2}=0.72 \mathrm{GeV}^{2}$

2 \& 3 forward jets in pPb@LHC

$$
R_{\mathrm{pA}}=\frac{\frac{d \sigma^{p+A}}{d \mathcal{O}}}{A \frac{d \sigma^{p+p}}{d \mathcal{O}}}
$$

[v. Hameren, Kotko, Kutak, Marquet, Sapeta, Phys.Rev. D89 (2014) 9, 094014]

$\Delta p_{T}=\left|\vec{p}_{T 1}+\vec{p}_{T 2}+\vec{p}_{T 3}\right|$
[v. Hameren, Kotko, Kutak,
Phys.Rev. D88 (2013) 094001]

Theory description: use dilute approximation

- use hybrid formalism: proton through collinear pdfs, Pb saturated gluon
- dilute expansion $\left|p_{1 t}+p_{2 t}\right|>Q_{s}$
(2 jets: complete LO matrix element known in principle, 3 jets: unknown)
- hard process: only single scattering with glue field, saturation through k_{T} dependence

the presented studies have certain limitations
- uncontrolled higher order corrections (only LO in $\boldsymbol{\alpha}_{\mathrm{S}}$)
- dilute expansion $p_{1 t}+p_{2 t}$ >Qs
(=probe the tail of saturation, but appropriate in certain kinematics)
need to increase theory precision for establishing saturation + extracting gluon distributions (important for precision at EIC but also LHC, HERA analysis)
our project: calculate (NEW: NLO from momentum space)
A. tri-particle production at LO (new for DIS, pA 1st complete) expect more stringent tests of CGC through more complex final state
B. di-particle production at NLO (3 partons a subset!) reduce uncertainties + possibly identify overlap region between collinear factorisation and saturation physics

As a first step: limit to DIS (electron-nucleus i.e. γ^{*} A collisions)
but derive important general results on the way
\rightarrow first step for future pPb calculation in "hybrid-"formalism

Theory: quarks, gluons in the presence of high gluon densities

- propagation of quarks, gluons in presence of a strong $\sim 1 / g$ background gluon field

$$
A^{+, a}\left(z^{-}, \boldsymbol{z}\right)=\alpha^{a}(\boldsymbol{z}) \delta\left(z^{-}\right)
$$

- target=background field: used to build gluon distributions
- technically: use factorisation of QCD amplitudes in high energy limit ($=x \rightarrow 0$ limit)

Theory: Propagators in background field

use light-cone gauge, with $k^{-}=n^{-} \cdot k,\left(n^{-}\right)^{2}=0, n^{-} \sim$ target momentum

$$
\tilde{S}_{F}^{(0)}(p)=\frac{i \not p+m}{p^{2}-m^{2}+i 0} \quad \tilde{G}_{\mu \nu}^{(0)}(p)=\frac{i d_{\mu \nu}(p)}{p^{2}+i 0}
$$

$$
d_{\mu \nu}(p)=-g_{\mu \nu}+\frac{n_{\mu}^{-} p_{\nu}+p_{\mu} n_{\nu}^{-}}{n^{-} \cdot p}
$$

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], ...
interaction with the background field:

$$
\begin{aligned}
& \xrightarrow{p} X \rightarrow{ }^{q}=2 \pi \delta\left(p^{-}-q^{-}\right) \not \mathscr{K}^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})} \\
& \cdot\left\{\theta\left(p^{-}\right)[V(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[V^{\dagger}(\boldsymbol{z})-1\right]\right\}
\end{aligned}
$$

$\xrightarrow[900 \times(900]{p}$

$$
\begin{aligned}
=-2 \pi \delta\left(p^{-}\right. & \left.-q^{-}\right) 2 p^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})} \\
& \cdot\left\{\theta\left(p^{-}\right)[U(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[U^{\dagger}(\boldsymbol{z})-1\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

strong background field resummed into path ordered exponentials (Wilson lines)
in contrast to dilute expansion: every line interacts with dense gluon field
Difference between DIS and LHC calculation: 3 parton production

DIS: $\gamma^{*} \rightarrow 3$ partons

LHC: $\mathrm{q}, \mathrm{g} \rightarrow 3$ partons

- Feynman diagrams do not yet contain interaction with background field: each internal \& each external coloured line to be split into 2 terms (-1)
- DIS the preferred playground for theory developments

1 extra parton - can cause a lot of work! (even for DIS process)
di-hadrons at LO: paper \& pencil calculation e.g.[Geils, Jallilian-Marian,PRD67, 074019 (2003)]

each line \& each final state splits into two terms (free + interaction)
\rightarrow real NLO: 16 diagrams (amp. level)
\rightarrow virtual NLO: 32 diagrams (amp. level)
on X-sec. level: up to 16 Gamma matrices in a single Dirac trace
$\rightarrow 15$! = 1307674368000 individual terms (not all non-zero though)
B necessary to achieve (potential) cancelations of diagrams BEFORE evaluation
B require automatization of calculation (= use of Computer algebra codes)

Reduce \# of Diagrams

Configuration space: cuts at $x^{-}=0$

- diagrams to configuration space \rightarrow momentum delta function as integral at each vertex + four momentum integral at each internal internal line
- Feynman propagator in configuration space

$$
\begin{aligned}
\Delta_{F}^{(0)}(x) & =\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{i \cdot e^{-i p \cdot x}}{p^{2}-m^{2}+i 0}=\int \frac{d p^{+}}{(2 \pi)} \int \frac{d p^{-} d^{d-2} \boldsymbol{p}}{(2 \pi)^{d-1}} \frac{e^{-i p^{-} x^{+}+i \boldsymbol{p} \cdot \boldsymbol{x}}}{2 p^{-}} \cdot \frac{i \cdot e^{-i p^{+} x^{-}}}{p^{+}-\frac{\boldsymbol{p}^{2}+m^{2}-i 0}{2 p^{-}}} \\
& =\int \frac{d p^{-} d^{d-2} \boldsymbol{p}}{(2 \pi)^{d-1}} \frac{e^{-i p x}}{2 p^{-}}\left[\theta\left(p^{-}\right) \theta\left(x^{-}\right)-\theta\left(-p^{-}\right) \theta\left(-x^{-}\right)\right]_{p^{+}=\frac{\boldsymbol{p}^{2}+m^{2}}{2 p^{-}}}
\end{aligned}
$$

- divide x_{i}^{-}integral $\int_{-\infty}^{\infty} d x_{i}^{-} \rightarrow \int_{-\infty}^{0} d x_{i}^{-}+\int_{0}^{\infty} d x_{i}^{-} \quad \rightarrow$ each of our diagrams cut by a line separating positive \& negative light-cone time
- s-channel kinematics $\left[\mathrm{k}^{-}=\mathrm{p}_{1}{ }^{-}+\mathrm{p}_{2}{ }^{-}+\ldots\right.$, all positive] \rightarrow only s-channel type cuts possible (~vertical cuts)

Configuration space can help

- recall:

not altered through interaction
i.e. minus momentum flow
- recall: interaction placed at slice $z^{-=}=0$

$$
A^{+, a}\left(z^{-}, z\right)=\alpha^{a}(z) \delta\left(z^{-}\right)
$$

\rightarrow interaction must be always placed at a $z^{-}=0$ cut of the diagram.
Note: this applies equally to configuration and momentum space

- evaluates already sum of a large fraction of diagrams (~50\%) to zero

forbidden configurations: cannot be accommodated by vertical (s-channel type) cut

Can we Do better? more constraints

consider complete configuration space propagator (free + interacting part)

$$
S_{F}(x, y)=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{d^{d} q}{(2 \pi)^{d}} e^{-i p x}\left[\tilde{S}_{F}^{(0)}(p)(2 \pi)^{d} \delta^{(d)}(p-q)+\tilde{S}_{F}^{(0)}(p) \tau_{F}(p, q) \tilde{S}_{F}^{(0)}(q)\right] e^{i q y}
$$

obtain free propagation for

- $x-, y<0$ ("before interaction")
- $x, y>0$ ("after interaction")

propagator proportional to complete Wilson line V (fermion) or U (gluon) if we cross
cut at light-cone time 0

- no direct translation to momentum space adding free propagation \& interaction \rightarrow mixing of different mom. space diagrams
b but strong constraints on the structure of the full result

Configuration Space predicts which Operators have non-zero coefficients

momentum space: necessary coefficients from only 4 (instead of 16) diagrams
(cancelation of all other contributions verified by explicit calculations)

virtual corrections: similar result, necessary coefficients from 8 (instead of 32) diagrams

Structure of Wilson correlators
for 3 particle production in DIS

Wilson lines build correlators = different gluon distributions (in general more than one)

- e.g. inclusive DIS at LO: target interaction through color dipole

$$
\mathcal{N}(\boldsymbol{r}, \boldsymbol{b})=\frac{1}{N_{c}} \operatorname{Tr}\left(1-V(\boldsymbol{x}) V^{\dagger}(\boldsymbol{y})\right) \quad \boldsymbol{r}=\boldsymbol{x}-\boldsymbol{y} \quad \boldsymbol{b}=\frac{1}{2}(\boldsymbol{x}+\boldsymbol{y})
$$

- 2 parton final state: new correlator - the quadrupole

$$
\mathcal{N}^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)=\frac{1}{N_{c}} \operatorname{Tr}\left(1-V\left(\boldsymbol{x}_{1}\right) V^{\dagger}\left(\boldsymbol{x}_{2}\right) V\left(\boldsymbol{x}_{3}\right) V^{\dagger}\left(\boldsymbol{x}_{4}\right)\right)
$$

- for large N_{c} at most quadrupoles in n-particle production; finite $N_{c} n$-particle $\triangleq n$ correlators [Dominguez, Marquet, Stasto, Xiao; Phys.Rev. D87 (2013) 034007]
isolate Wilson line \& color generators of amplitudes
+ square them
(Mathematica)
+ express adjoint Wilson lines in terms of fundamental

$$
U^{a b}\left(z_{t}\right)=\operatorname{tr}\left[t^{a} V\left(z_{t}\right) t^{b} V^{\dagger}\left(z_{t}\right)\right]
$$

+ make use of Fiery identities

$$
\begin{aligned}
\operatorname{tr}\left[t^{a} A t^{a} B\right] & =\frac{1}{2} \operatorname{tr}[A] \operatorname{tr}[B]-\frac{1}{2 N_{c}} \operatorname{tr}[A B] \\
\operatorname{tr}\left[t^{a} A\right] \operatorname{tr}\left[t^{a} B\right] & =\frac{1}{2} \operatorname{tr}[A B]-\frac{1}{2 N_{c}} \operatorname{tr}[A] \operatorname{tr}[B]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}\left[W_{1} W_{1}^{*}\right]=\frac{\left(N_{c}^{2}-1\right) S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{2 N_{c}} \\
& \operatorname{tr}\left[W_{1} W_{2}^{*}\right]=\frac{1}{4}\left(S_{D}\left(z_{t}^{\prime}, x_{t}^{\prime}\right) S_{Q}\left(x_{t}, z_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{1} W_{3}^{*}\right]=\frac{1}{2}\left(S_{D}\left(x_{t}, y\right) S_{D}\left(y_{t}^{\prime}, x_{t}^{\prime}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{1} W_{4}^{*}\right]=\frac{1}{4}\left(S_{D}\left(z_{t}^{\prime}, x_{t}^{\prime}\right) S_{Q}\left(x_{t}, z_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{2} W_{1}^{*}\right]=\frac{1}{4}\left(S_{D}\left(x_{t}, z\right) S_{Q}\left(z_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{2} W_{2}^{*}\right]=\frac{1}{8}\left(S_{Q}\left(x_{t}, x_{t}^{\prime}, z_{t}^{\prime}, z_{t}\right) S_{Q}\left(z, z_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{2} W_{3}^{*}\right]=\frac{1}{4}\left(S_{D}\left(z, y_{t}\right) S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, z\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{2} W_{4}^{*}\right]=\frac{1}{8}\left(S_{Q}\left(x_{t}, x_{t}^{\prime}, z_{t}^{\prime}, z\right) S_{Q}\left(z_{t}, z_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{3} W_{1}^{*}\right]=\frac{1}{2}\left(S_{D}\left(x_{t}, y_{t}\right) S_{D}\left(y_{t}^{\prime}, x_{t}^{\prime}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{3} W_{2}^{*}\right]=\frac{1}{4}\left(S_{D}\left(y_{t}^{\prime}, z_{t}^{\prime}\right) S_{Q}\left(x_{t}, x_{t}^{\prime}, z_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{3} W_{3}^{*}\right]=\frac{\left(N_{c}^{2}-1\right) S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{2 N_{c}} \\
& \operatorname{tr}\left[W_{3} W_{4}^{*}\right]=\frac{1}{4}\left(S_{D}\left(y_{t}^{\prime}, z_{t}^{\prime}\right) S_{Q}\left(x_{t}, x_{t}^{\prime}, z_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{4} W_{1}^{*}\right]=\frac{1}{4}\left(S_{D}\left(x_{t}, z_{t}\right) S_{Q}\left(z, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{4} W_{2}^{*}\right]=\frac{1}{8}\left(S_{Q}\left(x_{t}, x_{t}^{\prime}, z_{t}^{\prime}, z_{t}\right) S_{Q}\left(z, z_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{4} W_{3}^{*}\right]=\frac{1}{4}\left(S_{D}\left(z, y_{t}\right) S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, z\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \operatorname{tr}\left[W_{4} W_{4}^{*}\right]=\frac{1}{8}\left(S_{Q}\left(x_{t}, x_{t}^{\prime}, z_{t}^{\prime}, z_{t}\right) S_{Q}\left(z_{t}, z_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)-\frac{S_{Q}\left(x_{t}, x_{t}^{\prime}, y_{t}^{\prime}, y_{t}\right)}{N_{c}}\right) \\
& \text { with } \\
& S_{D}\left(x_{1, t}, x_{2, t}\right)=\operatorname{tr}\left[V\left(x_{1, t}\right) V^{\dagger}\left(x_{2, t}\right)\right] \\
& S_{Q}\left(x_{1, t}, x_{2, t}, x_{3, t}, x_{4, t}\right)=\operatorname{tr}\left[V\left(x_{1, t}\right) V^{\dagger}\left(x_{2, t}\right) V\left(x_{3, t}\right) V^{\dagger}\left(x_{4, t}\right)\right]
\end{aligned}
$$

Loop integrals

something slightly strange:
 Loop Integrals also for Real corrections

technical reason:

- momentum space amplitudes obtained from field correlators during LSZ reduction procedure
- integration over coordinates at vertices yields delta functions which evaluate momentum integrals trivially
- here: coordinate dependence of background field \rightarrow some of the delta functions absent

intuitive picture:
background field = t-channel gluons interacting with the target
\rightarrow naturally provide a loop which is factorized \& (partially) absorbed into the projectile in the high energy limit

3 particle production:

a 1-loop and a 2-loop topology

k_{1} and k_{2} are loop momenta
new complication: exponentials/Fourier factors
conventional: e.g. $\mathrm{k}_{1}{ }^{+}$integration by taking residues, then transverse integrals particular for 2 loop case: complicated transverse integrals
developed a new technique

* complete exponential factors to 4 dimensions
\star evaluate integral using "standard" momentum space techniques

a 1-loop example:

$$
I\left(p_{1}, p_{2}\right)=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{1}{\left[k_{1}^{2}\right]\left[\left(l-k_{1}\right)^{2}\right]} e^{i x_{t}\left(\cdot k_{1, t}-p_{1, t}\right)} e^{-i y_{t} \cdot\left(k_{1, t}+p_{2, t}\right)}(2 \pi)^{2} \delta\left(p_{1}^{-}-k_{1}^{-}\right) \delta\left(l^{-}-k_{1}^{-}-p_{2}^{-}\right)
$$

start with integral which contains

- delta functions
- transverse exponential factors

$$
I\left(p_{1}, p_{2}\right)=2 \pi \delta\left(l^{-}-p_{1}^{-}-p_{2}^{-}\right) e^{-i y_{t} \cdot\left(p_{1, t}+p_{2, t}\right)} \int d r^{+} \int d r^{-} \delta\left(r^{+}\right) \int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{1}{\left[k_{1}^{2}\right]\left[\left(l-k_{1}\right)^{2}\right]} e^{i r \cdot k_{1}}
$$

- introduce relative coordinate $r=x-y$
- represent delta function by integral
- introduce dummy integral over r^{+}
\rightarrow obtain 4(d) dimensional integral next step:
- Schwinger/ $\boldsymbol{\alpha}$-parameters

$$
\left(\frac{i}{k^{2}-m^{2}+i 0}\right)^{\lambda}=\frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} d \alpha \alpha^{\lambda-1} e^{i \alpha\left(k^{2}-m^{2}+i 0\right)}
$$

- complete square in exponent, Wick rotation, Gauss integral
- reconstruct delta functions to evaluate (some) of the $\boldsymbol{\alpha}$-parameter integrals
to facilitate these steps for 2, 3 loops (virtual!): "developed" Mathematica package
ARepCGC; implements necessary text-book methods [V. Smirnov, Springer 2006]

Complete result in terms of 2 functions

$$
\begin{aligned}
f_{(a)}\left(\bar{Q}^{2},-r^{2}\right) & =\int_{0}^{\infty} d \lambda \lambda^{a-1} e^{-\lambda \bar{Q}^{2}} e^{\frac{r^{2}}{4 \lambda}}=2^{1-a}\left(\frac{-r^{2}}{\bar{Q}^{2}}\right)^{a / 2} K_{a}\left(\sqrt{\bar{Q}^{2}\left(-r^{2}\right)}\right) \\
h_{(a, b)}\left(\bar{Q}^{2}, r_{1}^{2}, r_{3}^{2}\right) & =\int_{0}^{\infty} d \alpha \alpha^{a-1} e^{-\alpha \bar{Q}^{2}} e^{\frac{r_{1}^{2}}{4 \alpha}} \cdot \int_{0}^{\bar{\rho}} d \rho \rho^{b-1} e^{\frac{r_{3}^{2}}{4 \alpha \rho}} \\
& =2^{1-a} \int_{0}^{\bar{\rho}} d \rho \rho^{b-a / 2-1}\left(\frac{-\rho r_{1}^{2}-r_{3}^{2}}{\bar{Q}^{2}}\right)^{a / 2} K_{a}\left[\sqrt{\bar{Q}^{2} \cdot\left(-r_{1}^{2}-\frac{r_{3}^{2}}{\rho}\right)}\right]
\end{aligned}
$$

8 $\mathrm{K}_{\mathrm{a}}(\mathrm{x})$ modified Bessel function of 2 nd kind (Macdonald function)
b) require $f_{(a)}$ for $a=0,-1$ and $h_{\{a, b\}}$ for $a=0,-1,-2$ and $b=0,-1$

* further reduction possible due to integration by parts identities
* $h_{\{a, b\}}$ can be directly evaluated for $\mathrm{b}=-1$; general case into infinite sum over Bessel functions; numerics: keeping integral might be most stable
(3) massive case trivial as long one accepts one remaining integration for $h_{\{a, b\}}$

From Gamma matrices to cross-sections

Dirac traces from Computer Algebra Codes

- possible to express elements of Dirac trace in terms of scalar, vector and rank 2 tensor integrals
- Evaluation requires use of computer algebra codes; use 2 implementations: FORM [Vermaseren, math-ph/0000025] \& Mathematica packages FeynCalc and FormLink
- result (3 partons) as coefficients of "basis"-functions $f_{(a)}$ and $h_{(a, b)}$; result lengthy $(\sim 100 k B)$, but manageable
- currently working on further simplification through integration by parts relation between basis function (work in progress)

Next step: complete NLO corrections

- integrate one of the produced particles \rightarrow additional divergences
- rapidity divergence: JIMWLK evolution of dipoles \& quadrupoles (and their products)
- high Mx diffraction: require extension of JIMWLK to exclusive reactions [Hentschinski, Weigert, Schäfer, Phys.Rev. D73 (2006) 051501]
- soft singularities cancel between real \& virtual
- for $\gamma^{\star} \rightarrow h h+X$: final state collinear divergences: fragmentation functions
- for $\mathrm{q} \rightarrow \mathrm{jj}+\mathrm{X}$ etc: initial state collinear divergences: parton distribution functions + need to take care of potential soft factors
work in progress
related work:
[Boussarie, Grabovsky, Szymanowski, Wallon, JHEP1409, 026 (2014)]
[Balitsky, Chirilli, PRD83 (2011) 031502, PRD88 (2013) 111501]
[Beuf, PRD85, (2012) 034039]

Summary

- CGC is a systematic approach to high gluon densities in high energy collisions - used to fit a wealth of data (ep, pp, pA, AA)
- LO CGC works (sometimes too) well; qualitative/semiquantitative description of data requires NLO
- to arrive at a precise picture of saturated gluon densities we need precision - both experiment and theory
- Di-jet/-hadron angular correlations offer a unique probe of the CGC (both $e A$ and $p A$)
- Tri-jet/-hadron should be even more discriminatory

Summary

- developed techniques (diagram reduction, integrals) might have been available before, but never been exploited in a systematic way for this kind of calculation
- proof of concept for NLO momentum space calculation advantage: benefit from standard techniques for higher orders in QCD
(important: soft- and collinear singularities!)
- concentrate on DIS, but results (integrals, codes) extends beyond $\rightarrow 3$-jets, NLO correction for saturation/ CGC observables in e.g. pA at RHIC/LHC

Danke!

Electron-nucleus/-on scattering

- knowldege of scattering enery + nucleon mass + measure scattered electron \longrightarrow control kinematics

Expect those effects to be even more enhanced in boosted nuclei:

momentum vs. configuration

space

	conventional pQCD (make use of	inclusion of finite (charm masses!)	intuition: interaction at t=0 with Lorentz
lome mentuitive			
momentum space			
well explored	complication, but doable	losure at first -> large \# of	
configuration space	poorly explored	very difficult	many diagrams automatically zero
our approach:			

work in momentum space, but exploit relation to configuration space to set a large fraction of all diagrams to zero
the IC-Time Slice $\mathrm{X}^{-}=0$: 'cuts' through diagrams

Searching for saturation effects

Theory predictions for high \& saturated gluon densities

$x=Q^{2} / 2 p \cdot q \rightarrow 0$ limit corresponds to perturbative high energy limit $2 p \cdot q \rightarrow \infty$ for fixed resolution Q^{2}

- make use of factorisation of cross-sections in the high energy limit
- allows to resum interaction of quarks \& gluons with strong gluon field to all orders in the strong coupling \rightarrow resummation of finite density effects
- DIS X-sec. as convolution of "photon wave function" (process-dependent) and "color dipole factor" (universal, resums $\ln 1 / x$)
- physical picture: virtual photon
splits into color dipole (quarkantiquark pair) which interacts with Lorentz contracted target field

$$
\sigma_{L, T}^{\gamma^{*} A}\left(x, Q^{2}\right)=2 \sum_{f} \int d^{2} \boldsymbol{b} d^{2} \boldsymbol{r} \int_{0}^{1} d z\left|\psi_{L, T}^{(f)}\left(r, z ; Q^{2}\right)\right|^{2} \mathcal{N}(x, \boldsymbol{r}, \boldsymbol{b})
$$

$$
A^{+, a}\left(z^{-}, \boldsymbol{z}\right)=\alpha^{a}(\boldsymbol{z}) \delta\left(z^{-}\right)
$$

$x \rightarrow 0$: a single interaction with a strong \& Lorentz contracted gluon field

