
Martin Hentschinski 
martin.hentschinski@gmail.com 

IN COLLABORATION WITH 
A. Ayala, J. Jalilian-Marian, M.E. Tejeda Yeomans, 

QCD Challenges at the LHC: from pp to AA 
(Taxco, 18.-22. Jan. 2016)

Towards 3 particle correlations 
in the Color Glass Condensate 

framework

mailto:martin.hentschinski@gmail.com?subject=


0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

 HERAPDF2.0 NLO
 uncertainties:
 experimental
 model
 parameterisation
 
 HERAPDF2.0AG NLO 

x

x
f

2 = 10 GeV2

f
µ

vxu

vxd

 0.05)×xS (

 0.05)×xg (

H1 and ZEUS 

DIS at HERA: parton Distribution functions

gluon g(x) and sea-quark S(x) 
distribution like powers ~ x-λ  for 
x→0  
 
→ invalidates probability 
interpretation if continued forever 
(integral over x diverges)  
 
→ at some x, new QCD dynamics 
must set in

DIS & QCD
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HERA collider (92-07): Deep Inelastic Scattering (DIS) of  
of electrons on protons

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics
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DIS & QCD

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics
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Open Questions

The proton at high energies: saturation

theory considerations:

Geometric
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High gluon densities & heavy ions

• Believed: heavy ion collisions at RHIC, LHC 
= collisions of two Color Glass Condensate 

• but what are the correct initial conditions?

Open Questions

Saturation: high densities in the fast nucleus

Expect those e↵ects to
be even more enhanced in
boosted nuclei:
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pocket formula:  
            xeff(A)= xBjorken/A



CGC and long-range rapidity correlations in high multiplicity events 

• high multiplicities → screening of color charges introduces → saturation scale 
• high & saturated gluon densities (HERA fit with modified initial saturation 

scale, higher correlators from “Gaussian/dilute approximation”) 
• take limit  pT/QS≪1,  2 contributions: “glasma” and “jet” graph  

AA: glasma dominates, pp, pA  also jet graph (𝞪S suppressed)

Novel correlation phenomena 45
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Fig. 30. Anatomy of a proton-proton collision. The away-side peak, associated with mini-jet pro-
duction can be understood from the jet-graph (two gluons produced from a single ladder) as
shown in the right diagram along with its schematic contribution to the per-trigger-yield plotted
in blue. The Glasma graph contribution (left diagram) is shown schematically by the orange curve.
The shaded gray region (extracted experimentally by the ZYAM procedure) is referred to as the
associated yield

the azimuthal separation irrespective of the presence of an additional collimation
mechanism194 which is not apparent in equation (29). After the observation of a
ridge in high-multiplicity proton collisions a blast-wave analysis showed that the
near-side ridge in p-p could not be described by combination of isotropic production
from glasma flux tubes with subsequent transverse flow.195 Instead, the systemat-
ics of the p-p ridge were consistent with the intrinsic azimuthal dependence from
glasma graphs leaving little room for any additional transverse expansion.

We therefore have the following picture of the dihadron correlations in proton-
proton collisions (summarized graphically in Fig. 30). The Jet Graph generates
particles predominately back-to-back (i.e. at relative azimuthal angle of ⇡) and
when expressed as a per-trigger-yield d is approximately independent of multiplicity,
an observation consistent with the experimental data.

Due to a novel interference phenomenon generated from the intrinsic correlations
in the nucleus (the precise form of which will be discussed in the subsequent sec-
tions) the glasma graph has enhanced production on angular separations of �� = 0
and �� = ⇡. The collimation at �� = 0 is responsible for the near-side ridge while

dThe per-trigger-yield is the double-inclusive distribution
⌦
d

2

N

↵
divided by one power of the single

inclusive distribution hdNi. Since the jet and single-gluon graphs proceed via a single t-channel
exchange they have the same number of connections to the larger-x sources and therefore much
of the centrality dependence cancels in the ratio.



CGC & Ridges [Dusling, Venugopalan, Phys.Rev. D87 (2013) 9, 094034; 5, 051502]

52 Kevin Dusling, Wei Li, Björn Schenke
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Fig. 34. Representative sample of p-Pb data form the CMS, ALICE and ATLAS collaborations of
the per-trigger yield along with calculations within the glasma graph framework.

is evaluated at one-loop running at the relevant momentum scale of the process.
In addition, a correction from non-perturbative dynamics (for example multiple
scattering) is taken into account through the multiplicative pre-factor 1/⇣ that
enhances the glasma graph contribution relative to the jet contribution.

The parameter ⇣ is particularly sensitive to the multiplicity distribution (see
figure 35) and independent fits corroborate the value of ⇣ = 1/6 used in the glasma
graph ridge analysis. Lattice calculations112,222 find that this constant can be small,
⇣ ⇠ 0.2 � 1, lending support that non-perturbative corrections due to multiple-
scattering enhance the signal.

A comprehensive comparison of the glasma graph framework with all the avail-
able p-p, p-A and d-A data was presented in217 and will not be reproduced here.
Instead in figure 34 we show a representative set of p-Pb data from the CMS, ALICE
and ATLAS collaborations along with the corresponding glasma graph calculations.

In summary, the glasma graph framework is able to account for many features
of the data on a qualitative and quantitative level. These include 1) the long range
nature of the correlations, 2) the nearly symmetric near- and away-side ridge (the
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Fig. 34. Representative sample of p-Pb data form the CMS, ALICE and ATLAS collaborations of
the per-trigger yield along with calculations within the glasma graph framework.

is evaluated at one-loop running at the relevant momentum scale of the process.
In addition, a correction from non-perturbative dynamics (for example multiple
scattering) is taken into account through the multiplicative pre-factor 1/⇣ that
enhances the glasma graph contribution relative to the jet contribution.

The parameter ⇣ is particularly sensitive to the multiplicity distribution (see
figure 35) and independent fits corroborate the value of ⇣ = 1/6 used in the glasma
graph ridge analysis. Lattice calculations112,222 find that this constant can be small,
⇣ ⇠ 0.2 � 1, lending support that non-perturbative corrections due to multiple-
scattering enhance the signal.

A comprehensive comparison of the glasma graph framework with all the avail-
able p-p, p-A and d-A data was presented in217 and will not be reproduced here.
Instead in figure 34 we show a representative set of p-Pb data from the CMS, ALICE
and ATLAS collaborations along with the corresponding glasma graph calculations.

In summary, the glasma graph framework is able to account for many features
of the data on a qualitative and quantitative level. These include 1) the long range
nature of the correlations, 2) the nearly symmetric near- and away-side ridge (the
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works rather good, some say too good … 



What do we know really about saturated gluons? —  DIS on a proton at HERA
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[Albacete, Armesto, Milhano,Quiroga, Salgado, EPJ C71 (2011) 1705]

splitting recombination

color dipole 𝓝: all information about 
gluon distribution + follows non-linear 
evolution in ln(1/x) [JIMWLK or BK]

achieve a good description of 
combined (= high precision!) 
HERA data through rcBK fit

3

U , the integration over Ū then reduces to a factor of 1
and one is back at (3). (11) then leads to the contribution
of real emissions to the evolution equation

(∂Y Ẑ[U ])real=
αs

π2
Kxzy Uab

z i∇̄a
Ux

i∇b
Uy

Ẑ[U ] . (13)

Inserting virtual corrections by the requirement of real-
virtual cancellation in absence of interaction, one recov-
ers the JIMWLK evolution as stated in (4, 5). Exclusive
quantities on the other hand will depend separately on
U and Ū and require to keep both fields in Ẑ along with
more complicated evolution equations.

Since exclusive quantities are characterized by specific
restrictions on the phase space of produced gluons the
physically most transparent derivation of a corresponding
evolution equation is built on a systematic construction
of the contributing real emission amplitudes. The first
modification clearly concerns the ξ-correlator M used to
implement the phase space integrals. Diffractive disso-
ciation, which corresponds to a rapidity gap on the side
of the target, requires a factor u(k) = θ(Yk − Ygap) for
each final state gluon with momentum k . (The gap ra-
pidity Ygap is assumed to lie in the resolved range.) The
major change, however, results from the appearance of
additional diagrams that disappear in the inclusive re-
sult through complete real virtual cancellation. While
for JIMWLK it is sufficient to consider branching pro-
cesses that occur before the interaction with the Lorentz
contracted target, exclusive observables like diffractive
dissociation will receive contributions from reabsorption
and production in the final state, i.e. after the inter-
action with the target as shown in Fig.1. Reabsorption

FIG. 1: Generic diagrams for exclusive processes with final
state interactions. In the diagrams, rapidity of gluons in-
creases both vertically, in the final state, and horizontally,
with the distance of their emission vertex to the target: To
leading logarithmic accuracy, ordering in Y coincides with
ordering in z

− towards the interaction region. Consequently,
emissions into the final state after the interaction do not it-
erate: lines marked in the graph to the right are suppressed.

of a gluon after the interaction in the amplitude takes
a form similar to a virtual correction in the JIMWLK
case, but contains the soft interaction with the target,
i.e. a factor U per hard particle. Technically, the neces-
sary diagrams can be constructed by introducing a “three
time formalism” in which we distinguish z− = −∞, = 0
and = +∞ as the times at which the initial hard parti-
cles are created, the interaction takes place and the final
state is formed respectively. The transition amplitude

from z− = −∞ to +∞ is then created in two steps: we
use a shower operator to create gluons before the interac-
tion but anticipate that some of them directly reach the
final state while others will be reabsorbed after the inter-
action. In order to also generate the final state contribu-
tions with a shower operator, we introduce an auxiliary
Gaussian “noise” Ξ with the same average and correla-
tor as in (8) and (9). Furthermore we artificially split the
U factors of the interaction region into two Wilson lines
W and V † according to U = WV †. (One may think of
them as Wilson lines extending over the intervals [−∞, 0]
and [0,∞], respectively, they will disappear in the final
result.) We then obtain the full set of diagrams:

⟨Uf[Ξ, ξ]Ui[Ξ] ⟩Ξ (14)

= ⟨Uf[Ξ, ξ]
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where the sum is over the number of gluons and allowed
insertions. The dashed line through the interaction re-
gion represents the auxiliary split of the Wilson lines into
W and V † with accompanying Ξ factors. The shower op-
erators are given by

Ui[Ξ, ξ] = PY2 exp
[

i

∫

dY1dY2 θ(Y1−Y2)J
i
xz

(W ab
Y2,zΞb,i

Y2,z + (WV †)ab
Y2,zξ

b,i
Y2,z)i∇̄a

WY1x

]

(15a)

Uf[Ξ, ξ] = PY2 exp
[

i

∫

dY1dY2 θ(Y1−Y2)J
i
xz

(V ab
Y2,zΞb,i

Y2,z + ξa,i
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VY1,y

]

. (15b)

Eventually combining the above expression for the ampli-
tude with the corresponding expression for the complex
conjugate amplitude and differentiating w.r.t. Y yields
all real emission contributions to the evolution Hamil-
tonian as well as the interacting virtual ones. One still
misses virtual lines that do not cross the interaction re-
gions. These are again reconstructed on the level of the
evolution equation. We obtain the full Hamiltonian:

H = u(k)Hr + Hv + Hv̄ (16)

where the real gluonic corrections are produced by

Hr = −
αs

π2
Kxzy

(

Uab
z i∇̄a

Ux
i∇b

Ūy
+ Ūab

z i∇̄a
Ūx

i∇b
Uy

+ (UŪ †)ab
z i∇̄a

Ux
i∇̄b

Ūy
+ i∇a

Ux
i∇a

Ūy

)

.

The remaining terms correspond to virtual corrections in
amplitude and complex conjugate amplitude respectively

Hv=
−αs

2π2
Kxzy(i∇a

Ux
i∇a

Uy
+i∇̄a

Ux
i∇̄a

Uy
+2Uab

z
i∇̄a

Ux
i∇b

Uy
)

Hv̄=
−αs

2π2
Kxzy(i∇a

Ūx
i∇a

Ūy
+i∇̄a

Ūx
i∇̄a

Ūy
+2Ūab

z
i∇̄a

Ūx
i∇b

Ūy
) .

factorisation into  photon wave function 𝜓 
(ɣ*→qqbar) & color dipole 𝓝 (~dense gluon field)



But …data also described by 
pdf-fits (=DGLAP) — intrinsically 
dilute (virtual photon interacts with single 
quark, gluon)  

 … and also (collinear 
improved) NLO BFKL evolution 
can fit data 
[MH, Salas, Sabio Vera; PRD 87 (2013) 7, 076005]
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What we know and what we don’t know

• extracted saturation scales at HERA not so large (0.75-2 
GeV2) + DGLAP fits initial conditions at small Q2 

• description of HERA data by saturation AND DGLAP not 
really a contradiction, but also not yet definite proof for 
saturation, cannot  claim complete control  

• can use HERA fits (e.g. rcBK) in pA, AA, high multiplicity 
events through scaling of (initial) saturation scale  
Qs(A) = QsHERA ・A1/3, but rely on assumptions/arguments 

• in general: initial conditions not controlled on the level of 
accuracy as e.g. in pp through conventional pdfs



A collider to search for a definite Answer: 
the world’s first eA collider: will allow to probe heavy nuclei at small x 

(using 16GeV electrons on 100GeV/u ions)

Brookhaven National Laboratory: supplement 
RHIC with Electron Recovery Linac (eRHIC)

Jefferson Lab: supplement CEBAF 
with hadron accelerator (MEIC)

2015: endorsed by Nuclear Science Advisory Committee (NSAC) As highest priority for new Facility construction 
in US Nuclear Science Long Range plan 

+ plans for LHeC etc.



Tasks for theory… 
so far: 
• still rely often on models (even though an sophisticated level) such 

as IPsat, bCGC → x-dependence = assumption + fit 
• fits with evolution (rcBK): LO BK + running coupling corrections, 

coefficients at LO, with a few NLO exceptions (inclusive DIS, single 
inclusive jet in pA) 

recent progress: 
• NLO corrections for evolution [Balitsky, Chirilli; PRD 88 (2013) 111501, PRD 77 (2008) 014019]; 

[Kovner,Lublinsky, Mulian; PRD 89 (2014) 6, 061704] known & studied + resummed & 
used for first HERA fit [Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos, PLB750 (2015) 643] 
 
missing:  
→ NLO corrections for coefficients of exclusive observables   
                                       — provide strongest constraints on saturation



Example 1: Diffractive DIS at HERA 

higher twist effects at small Q2 as 
signal for saturation  
 
[Motyka, Slominski, Sadzikowski, Phys.Rev. D86 
(2012) 111501]
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Theoretical Limitations

• large MX  requires  qq̅g →also qq̅ at 1-loop since 
inclusive —  so far modelled using eikonal 
approximation [C. Marquet, Phys. Rev. D76, 094017 (2007)] 

• color dipole (=target interaction): truncation to certain 
twist of GBW model   

• motivated through “reggeization” in pQCD, but  
arbitrariness remains … 



A popular observable in the EIC program:       
                           Di-Hadron De-correlation in DIS

, y=0.72=1 GeV2Q
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gluon kT peaked at saturation scale  
                   - expect de-correlated di-hadrons

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?
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3

U , the integration over Ū then reduces to a factor of 1
and one is back at (3). (11) then leads to the contribution
of real emissions to the evolution equation

(∂Y Ẑ[U ])real=
αs

π2
Kxzy Uab

z i∇̄a
Ux

i∇b
Uy

Ẑ[U ] . (13)

Inserting virtual corrections by the requirement of real-
virtual cancellation in absence of interaction, one recov-
ers the JIMWLK evolution as stated in (4, 5). Exclusive
quantities on the other hand will depend separately on
U and Ū and require to keep both fields in Ẑ along with
more complicated evolution equations.

Since exclusive quantities are characterized by specific
restrictions on the phase space of produced gluons the
physically most transparent derivation of a corresponding
evolution equation is built on a systematic construction
of the contributing real emission amplitudes. The first
modification clearly concerns the ξ-correlator M used to
implement the phase space integrals. Diffractive disso-
ciation, which corresponds to a rapidity gap on the side
of the target, requires a factor u(k) = θ(Yk − Ygap) for
each final state gluon with momentum k . (The gap ra-
pidity Ygap is assumed to lie in the resolved range.) The
major change, however, results from the appearance of
additional diagrams that disappear in the inclusive re-
sult through complete real virtual cancellation. While
for JIMWLK it is sufficient to consider branching pro-
cesses that occur before the interaction with the Lorentz
contracted target, exclusive observables like diffractive
dissociation will receive contributions from reabsorption
and production in the final state, i.e. after the inter-
action with the target as shown in Fig.1. Reabsorption

FIG. 1: Generic diagrams for exclusive processes with final
state interactions. In the diagrams, rapidity of gluons in-
creases both vertically, in the final state, and horizontally,
with the distance of their emission vertex to the target: To
leading logarithmic accuracy, ordering in Y coincides with
ordering in z

− towards the interaction region. Consequently,
emissions into the final state after the interaction do not it-
erate: lines marked in the graph to the right are suppressed.

of a gluon after the interaction in the amplitude takes
a form similar to a virtual correction in the JIMWLK
case, but contains the soft interaction with the target,
i.e. a factor U per hard particle. Technically, the neces-
sary diagrams can be constructed by introducing a “three
time formalism” in which we distinguish z− = −∞, = 0
and = +∞ as the times at which the initial hard parti-
cles are created, the interaction takes place and the final
state is formed respectively. The transition amplitude

from z− = −∞ to +∞ is then created in two steps: we
use a shower operator to create gluons before the interac-
tion but anticipate that some of them directly reach the
final state while others will be reabsorbed after the inter-
action. In order to also generate the final state contribu-
tions with a shower operator, we introduce an auxiliary
Gaussian “noise” Ξ with the same average and correla-
tor as in (8) and (9). Furthermore we artificially split the
U factors of the interaction region into two Wilson lines
W and V † according to U = WV †. (One may think of
them as Wilson lines extending over the intervals [−∞, 0]
and [0,∞], respectively, they will disappear in the final
result.) We then obtain the full set of diagrams:

⟨Uf[Ξ, ξ]Ui[Ξ] ⟩Ξ (14)

= ⟨Uf[Ξ, ξ]
∑

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

⟩Ξ =
∑

|

|

|

|

|

|

|

|

where the sum is over the number of gluons and allowed
insertions. The dashed line through the interaction re-
gion represents the auxiliary split of the Wilson lines into
W and V † with accompanying Ξ factors. The shower op-
erators are given by

Ui[Ξ, ξ] = PY2 exp
[

i

∫

dY1dY2 θ(Y1−Y2)J
i
xz

(W ab
Y2,zΞb,i

Y2,z + (WV †)ab
Y2,zξ

b,i
Y2,z)i∇̄a

WY1x

]

(15a)

Uf[Ξ, ξ] = PY2 exp
[

i

∫

dY1dY2 θ(Y1−Y2)J
i
xz

(V ab
Y2,zΞb,i

Y2,z + ξa,i
Y2,z)i∇̄a

VY1,y

]

. (15b)

Eventually combining the above expression for the ampli-
tude with the corresponding expression for the complex
conjugate amplitude and differentiating w.r.t. Y yields
all real emission contributions to the evolution Hamil-
tonian as well as the interacting virtual ones. One still
misses virtual lines that do not cross the interaction re-
gions. These are again reconstructed on the level of the
evolution equation. We obtain the full Hamiltonian:

H = u(k)Hr + Hv + Hv̄ (16)

where the real gluonic corrections are produced by

Hr = −
αs

π2
Kxzy

(

Uab
z i∇̄a

Ux
i∇b

Ūy
+ Ūab

z i∇̄a
Ūx

i∇b
Uy

+ (UŪ †)ab
z i∇̄a

Ux
i∇̄b

Ūy
+ i∇a

Ux
i∇a

Ūy

)

.

The remaining terms correspond to virtual corrections in
amplitude and complex conjugate amplitude respectively

Hv=
−αs

2π2
Kxzy(i∇a

Ux
i∇a

Uy
+i∇̄a

Ux
i∇̄a

Uy
+2Uab

z
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Ux
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Uy
)

Hv̄=
−αs

2π2
Kxzy(i∇a

Ūx
i∇a

Ūy
+i∇̄a

Ūx
i∇̄a

Ūy
+2Ūab

z
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Ūx
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) .



• also here the NLO corrections are missing (qq̅g + qq̅ at 1-loop) 

• soft radiative corrections have been evaluated at leading order 
[Mueller, Xiao, Yuan, Phys.Rev. D88 (2013) 11, 114010] 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[Zheng,Aschenauer, Lee, Xiao, PRD89 (2014)7, 
074037]

Potential limitations 

comparison of ep and eA shows 
at first clear signal …. 

…. but Sudakov factors have a 
big effect  ….  

…. signal remains, but inclusion of 
higher order corrections 
necessary for precise distinction 
of different approaches



CGC and d-Au collisions at RHIC

 

signal in d-Au collisions at 
RHIC:  
depletion of away side peak in 
central collisions described by 
CGC

9
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FIG. 5: The pedestal-subtracted quark-gluon parton level
azimuthal correlation at forward RHIC kinematics, at dif-
ferent values of the trigger transverse momenta ptrigT =
1.5, 2, 2.5 GeV and y = 2.4. Shown is only the large Nc result.
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normalized by the pedestal yield. Shown is only the large Nc

result.

in the target given by a saturation scale. Since we are ne-
glecting any di↵erences in the large x quark distribution
between a deuteron and a proton, there is no di↵erence
in the correlated peak between pAu and dAu collisions.
Due to the enhanced DPS contribution in deuteron col-
lisions (where the possibility of taking one large x quark
from the proton and the other from the neutron makes
it much easier to observe a double scattering event in
very forward kinematics), the DPS contribution is much
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included and the result is normalized by the pedestal yield.
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FIG. 8: The ⇡0 azimuthal correlation compared to the
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�'-independent pedestal in the plot is adjusted to fit the ex-
perimental data, see Table I for the calculated estimates. The
initial saturation scales are Q2

s0 = 1.51 GeV2 (solid line) and
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larger in dAu collisions. This leads to a smaller ratio of
the correlated peak to the pedestal, purely because of the
increase in the denominator. The e↵ect is similar to what
is seen in the STAR forward neutron tagged (e↵ectively
pAu) data [45] and discussed in Ref. [40].

Figure 5 shows the dependence on the parton level
dAu result on the trigger transverse momentum. Shown

theory:  
involves higher correlator (‘quadrupole’, not only 
dipole) — state-of-the art: calculate in Gaussian/
dilute approximation from dipole [Lappi, Mantysaari, 
Nucl.Phys. A908 (2013) 51-72] 

π0 azimuthal correlation compared to the 
PHENIX d-Au result (0.5GeV<pass<0.75 GeV, 3<y1,y2<3.8).  
solid line: QS02 = 1.51 GeV2,  

dashed line: QS02 = 0.72 GeV2



2 & 3 forward jets in pPb@LHC
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[v. Hameren, Kotko, Kutak, Marquet,
 Sapeta, Phys.Rev. D89 (2014) 9, 094014]

Figure 3: Nuclear modification ratios, defined in Eq. (4.2), as functions of jet rapidity (left) and the
azimuthal distance between two hardest jets produced in the forward region (right). All details as in
Fig. 2.

This may be an indication of the importance of higher order corrections in the evolution of
the unintegrated gluon density present in the KS case.

Let us turn to the discussion of possible signatures of saturation. For that we shall look
at the forward-forward dijet production in p+A collisions and compare to the previously
described p+p case. In Figs. 2 and 3 we show the nuclear modification factors defined for
each observable O as

RpA =

d�p+A

dO
A

d�p+p

dO
. (4.2)

If the case of absence of nonlinear e↵ects or in the case in which they are equally strong in
the nucleus and in the proton, this ratio equals 1. If, however, the nonlinear evolution plays
a more important role in the case of the nucleus, the RpA ratio will be suppressed below 1.

The plots in Fig. 2 show the RpA ratios for the p
t

of the leading (left) and sublead-
ing (right) jet. In Fig. 3 we have similar ratios for rapidity and azimuthal angle distributions.
For each gluon we consider two scenarios to assess possible uncertainties of our prediction.
In the rcBK case, we use d = 2.0 and d = 4.0 (c.f. Eq. (3.4)), while in the KS case, we
use c = 0.5 and c = 1.0 (see formula (3.9)). As we see in the plots, the scale uncertainty is
greatly reduced compared to the distributions shown in Fig. 1. The qualitative behaviour of
the predictions with two gluons is very similar. They di↵er mostly at the quantitative level.
In particular, in the case of p

t

of the leading jet, we observe a suppression of the order of
20 � 30% at low p

t

for rcBK and 30 � 50% for the KS gluon. For the subleading jet this
suppression is smaller in both cases. The rapidity RpA ratios are also significantly below 1,
especially in the very forward region, which corresponds to probing the unintegrated gluon at
low x, hence in the domain with strong sensitivity to saturation e↵ects. Finally, in the case
of decorrelations, ��, both gluons lead to even up to 60% suppression in the back-to-back
limit �� ! ⇡.

To finish, we illustrate in Fig. 4 the impact of saturation e↵ects in the KS evolution
by switching o↵ the non-linear term in the evolution. We note that the parameters of this
alternative gluon distribution for the proton, obtained with linear evolution, are re-adjusted
in order to keep a good description of DIS data from HERA. The left plot shows the impact
of non-linear e↵ects on the di↵erential cross section in p+p collisions as a function of the
azimuthal angle, and it is large, as expected, near �� = ⇡. The right plot shows, in the
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Figure 14: Differential cross section in the unbalanced pT for central-forward jets. The band
represents the theoretical uncertainty due to scale variation and statistical errors. The left plots
correspond to c.m. energy 5.02TeV, the right to 7.0TeV. The bottom plots zoom the low ∆pT
region (note the distributions are differential in ln (∆pT ) there).

4.4 Unbalanced jet transverse momentum

Let us now switch to an analysis of the cross section as a function of the following quantity

∆pT = |p⃗T 1 + p⃗T 2 + p⃗T 3| , (20)

which in the prescription given by the Eq. (4) corresponds to the transverse momentum of the

off-shell gluon, i.e., ∆pT =
∣

∣

∣⃗
kT A

∣

∣

∣
.

Let us remark, that the distributions we are going to present can be much more affected by
the final state parton shower, than the decorrelation distribution presented above. Nevertheless,
it is very interesting to study the influence of different evolution equations for the multiparticle
production purely within the high-energy factorization.

4.4.1 Central-forward jets

We present the results in Figs. 14, 15, 16. The first immediate observation is that the distributions
possess a maximum around 1GeV (bottom of Figs. 14, 16) which corresponds to the maximum of
the unintegrated gluon densities (see Ref. [46]) used in the calculations. The region below 1GeV is
sensitive to the different evolutions; the most significant difference is between linear and non-linear
evolution, however the nuclear modification factor is slightly suppressed for ∆pT < 2.5GeV.

The scenario with the two leading jets being back-to-back-like is not especially interesting for
the unbalanced transverse momentum distributions due to the kinematics involved. It turns out
that the region of ∆pT that is smaller then a few GeV is kinematically forbidden. Although
back-to-back forward-central jets probe actually the high transverse momenta in the unintegrated
gluon density, we did not see any conclusive features of tails in our distributions.
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Theory description: use dilute approximation

Figure 1: Inclusive dijet production in p+A collision. The blob H represents hard scattering.
The solid lines coming out of H represent partons, which can be either quarks or gluons.

The process is shown schematically in Fig 1. The four-momenta of the projectile and the target
are massless and purely longitudinal. In terms of the light cone variables, v± = (v0 ± v3)/

p
2,

they take the simple form

p
p

=

r

s

2
(1, 0

t

, 0) , p
A

=

r

s

2
(0, 0

t

, 1) , (2.2)

where s is the squared center of mass energy of the p+A system.
The energy (or longitudinal momenta) fractions of the incoming parton (either a quark or

gluon) from the projectile, x1, and the gluon from the target, x2, can be expressed in terms of
the rapidities and transverse momenta of the produced jets as

x1 =
p+1 + p+2

p+
p

=
1p
s

(|p1t|ey1 + |p2t|ey2) , (2.3a)

x2 =
p�1 + p�2

p�
A

=
1p
s

�|p1t|e�y1 + |p2t|e�y2
�

, (2.3b)

where p1t, p2t are transverse Euclidean two-vectors. By looking at jets produced in the forward
direction, we e↵ectively select those fractions to be x1 ⇠ 1 and x2 ⌧ 1. Since the target A is
probed at low x2, the dominant contributions come from the subprocesses in which the incoming
parton on the target side is a gluon

qg ! qg , gg ! qq̄ , gg ! gg . (2.4)

In dilute-dense collisions, the large-x partons of the dilute projectile are described in terms of the
usual parton distribution functions of collinear factorization f

a/p

, with a scale dependence given
by DGLAP evolution equations. By contrast, the small-x gluons of the dense target nucleus
are described by a transverse-momentum-dependent distribution, which evolve towards small x
according to non-linear equations. Moreover, the momentum k of the incoming gluon from the
target, besides the longitudinal component k� = x2

p

s/2, has in general a non-zero transverse
component, k

T

, which leads to imbalance of transverse momentum of the produced jets

|k
t

|2 = |p1t + p2t|2 = |p1t|2 + |p2t|2 + 2|p1t||p2t| cos�� , (2.5)
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• use hybrid formalism: proton through 
collinear pdfs, Pb saturated gluon 

• dilute expansion |p1t+p2t|≫QS  
(2 jets: complete LO matrix element known in principle,  
 3 jets: unknown) 

• hard process: only single scattering with 
glue field, saturation through kT 
dependence

of the e↵ective diagrams

pa

p

qk

= +

+ + .

With the Sudakov decomposition of external momenta given by

p

a

=
p

+

a

2
n

�
p =
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2
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� +
p

�

2
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+ + k � q,

k =
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�

2
n

+ + k q =
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+

a

2
n

� +
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� � p

�

2
n

+ + q, (26)

with z = q

+

/p

+

a

and

p

� =
(k � q

2)

(1� z)p+
a

, k

� =
�2 + z(1� z)k2

(1� z)p+
a

, � = q � zk. (27)

The squared amplitude reads

|M|2
r

⇤
q!qg

=
8g4p+2

a

N

2

c

� 1

P
gq

(z, ✏)

�2

q

2

(1� z)zk2

k

02 ✓

0

@
z � e

�⌘b

q
q

2

?

p

+

a

1

A

· ⇥C
F

z

2

k

02 +N

c

(1� z)� · q⇤ , (28)

where P
gq

(z, ✏) = C

F

1+(1�z)

2
+✏z

2

z

is the real part of the q ! g splitting function and
k

0 = q � k. The lower cut-o↵ ⌘

b

on the rapidity ⌘ = ln q2/(zp+
a

) of the gluon has
been introduced, in direct analogy to the corresponding lower cut-o↵ for the central
production vertex. The upper limit for the quasi-elastic contribution is bounded by
kinematics since z < 1. Putting together these results, the real corrections to the jet
vertex are

h

(1)(k)dzd2+2✏

q =

p
N

2

c

� 1

(2p+
a

)2

Z
dk

�

(2⇡)2+✏

d�(2)|M|2
qg

⇤!qg

1

k

2

, (29)

with the two-particle phase space explicitly given by

d�(2) =
1

2p+
a

(2⇡)2+2✏

dzd

2+2✏

q

1

(1� z)z
�

✓
k

� � �2 + z(1� z)k2

(1� z)p+
a

◆
. (30)
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the presented studies have certain limitations 
uncontrolled higher order corrections (only LO in 𝞪S) 

dilute expansion p1t+p2t|≫QS  
(=probe the tail of saturation, but appropriate in certain 
kinematics)  

need to increase theory precision for establishing saturation  + 
extracting gluon distributions (important for precision at EIC but also LHC, HERA analysis) 

our project: calculate                  (NEW: NLO from momentum space) 

A. tri-particle production at LO (new for DIS, pA 1st 
complete)  
expect more stringent tests of CGC through more complex final state 

B. di-particle production at NLO (3 partons a subset!) 
reduce uncertainties + possibly identify overlap region between collinear 
factorisation and saturation physics

As a first step: limit to DIS (electron-nucleus i.e. ɣ*A collisions) 
but derive important general results on the way  
 → first step for future pPb calculation in “hybrid-”formalism



Theory: quarks, gluons in the presence of high 
gluon densities

• propagation of quarks, gluons in presence of a strong ~1/g 
background gluon field  

• target=background field: used to build gluon distributions 

• technically: use factorisation of QCD amplitudes in high 
energy limit (= x →0 limit)

Key measurements at an EIC

Searching for saturation e↵ects: Dihadron-decorrelation
Saturation ⌘ high gluon densities multiple scatterings

�

⇤

dilute regime: 1 gluon

with small k

T

�

⇤

!
�

⇤

x ! 0: a single interaction with a strong & Lorentz

contracted gluon field

expect di↵erence in angular distribution of detected di-hadrons
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with Wilson lines in fundamental (V ) and adjoint (U) represenation which read
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the following generalized spinors and polarization vectors can be used2
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula
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Theory: Propagators in background field
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the real gluon interacting with the quark at the same vertex) and therefore posesses, as
far as the pole structure is concerend, the same structure as the the first contribution.
Moreover, unlike the first contribution, the vertex which leads to emission of the real
gluon, can appear at any position. Note that, since we are dealing with a real final
state quark and gluon, the time ordering of the ‘quark Wilson line’ is not a↵ected by
the emission of the real gluon. Taking into account only the color generators due to the
interaction with the background field and the vertex Eq. (24) we have for the second
contribution, the following result,
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(25)

where we restricted ourselves to the case n = 3 with the generalization to arbitrary n

apparent. After contraction with q

⇢, the factor in front of the squared bracket turns
into gn�. For the first contribution one has instead (with the incoming quark momentum
p and the outgoing quark momentum r)
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After contraction with q

⇢ and using that the out-going quark is real we have
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The last two terms cancel now against the with q

⇢ contracted Eq. (25) while the first
term is only present due to the o↵-shellness of the initial gluon and is identical to the
case where a gluon is emitted from a quark without interaction with the background
field. Hence it is supposed to be canceled by some standard mechanism.

1.2 Momentum space

Generalizing [1] to d dimensions and masses we have for the propagators
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(0)

↵⌫

(q)

(28)
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with the free propagators
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(p) =
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n

�
µ
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� · p (29)

and the interaction terms1

p q

= 2⇡�(p� � q

�)n��
Z

d

d�2
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�iz·(p�q)

·
n

✓(p�)[V (z)� 1]� ✓(�p

�)[V †(z)� 1]
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p q
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�)2p�
Z

d

d�2
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�iz·(p�q)

·
n

✓(p�)[U(z)� 1]� ✓(�p

�)[U †(z)� 1]
o

(31)

with Wilson lines in fundamental (V ) and adjoint (U) represenation which read

V (z) ⌘ V

ij

(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)tc

U(z) ⌘ U

ab(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)T c

A

+,a(z�, z) = ↵

a(z)�(z�) (32)

with �iT

c

ab

= f

acb and A

+,a(x�, z) = �g�(x�)⇢
a

(x)/@2. For a produced real particle
the following generalized spinors and polarization vectors can be used2

ū(q, p) = ū(p)(2⇡)d�(d)(p� q) + ū(p)⌧
f

(p, q)S̃(0)

F

(q)

v̄(q, p) = v̄(p)(2⇡)d�(d)(p� q) + v̄(p)⌧
f
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v(q, p) = (2⇡)d�(d)(p� q)v(p) + S̃

(0)

F

(�q)⌧
f

(�q,�p)v(p)

✏

(�)

µ

(q, p) = ✏

(�)

µ

(p)(2⇡)d�(d)(p� q) + ✏

(�)

⌫

(p)⌧
g

(p, q)G̃(0)

⌫µ

(q) (33)

For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula
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u(q, p) = (2⇡)d�(d)(p� q)u(p) + S̃

(0)
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v(q, p) = (2⇡)d�(d)(p� q)v(p) + S̃

(0)
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(q, p) = ✏

(�)

µ
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula
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interaction with the background field:

strong background field resummed into path ordered 
exponentials (Wilson lines)

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, 
Venugopalan, PRD 52 (1995) 2935-2943], …

use light-cone gauge, with k-=n-･k, (n-)2=0, n-~ target momentum



in contrast to dilute expansion: every line interacts with dense gluon field 

Difference between DIS and LHC calculation: 3 parton production

• Feynman diagrams do not yet contain interaction with background field:  
each internal & each external coloured line to be split into 2 terms (-1) 

• DIS the preferred playground for theory developments

�
�

�
��

������

� → � � �

�
�

�
��

������

�

�

�
�

�

������

�

�
�

�

�

������

� → � � �

�

�
�
�

������

�
�

�
��

������

�

�

�
�

�

������

�

�
�

�

�

������

� → � � �

�
�

�
��

������

�

�

�
�

�

������

�

�
�

�

�

������

� → � � �

�
�

�
��

������

�

�

�
�

�

������

� → � � �

DIS: ɣ*→3 partons LHC: 
 q,g→3 partons



1 extra parton —  can cause a lot of work! (even for DIS process)

on X-sec. level: up to 16 Gamma matrices in a single Dirac trace  
→ 15! = 1307674368000 individual terms (not all non-zero though) 

 necessary to achieve (potential) cancelations of diagrams BEFORE 
evaluation 
 require automatization of calculation (= use of Computer algebra codes)

  
                                    

=                            +                           +

di-hadrons at LO: paper & pencil calculation e.g.[Gelis, Jalilian-Marian,PRD67, 074019 (2003) ]

each line & each final state splits into two terms 
(free + interaction) 

→ real NLO: 16 diagrams (amp. level)  
→ virtual NLO: 32 diagrams (amp. level)



Reduce # of Diagrams



of [2]) they allow to construct all amplitudes of interest. The new diagramatic rule
reads

p q

= ⌧

f

(p, q) (34)

p q

= ⌧

g

(p, q) (35)

p q / �(p� � q

�) (36)

Z 1

�1
dx

�
i

!
Z

0

�1
dx

�
i

+

Z 1

0

dx

�
i

1.3 Coordinate space - the quark case

In coordinate space we have for quarks

S

F

(x, y) =

Z

d

d

p

(2⇡)d
d

d

q

(2⇡)d
e

�ipx

S̃

F

(p, q)eiqy (37)

For the free propagator we find

S

(0)

F

(x� y) = (i@�
x

+m)�
F

(x� y) �
F

(x) =

Z

d

d

p

(2⇡)d
e

�ip·x i

p

2 �m

2 + i0
(38)

now

�(0)

F

(x) =

Z

d

d

p

(2⇡)d
i · e�ip·x

p

2 �m

2 + i0
=

Z

dp

+

(2⇡)

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ip

�
x

+

+ip·x

2p�
· i · e�ip

+

x

�

p

+ � p

2

+m

2�i0

2p

�

=

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ipx

2p�
⇥

✓(p�)✓(x�)� ✓(�p

�)✓(�x

�)
⇤

p

+

=

p2+m

2

2p

�

= �(0,+)

F

(x) +�(0,�)

F

(x) , (39)

with

�(0,±)

F

(x) = ±
Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ipx

2p�
✓(±p

�)✓(±x

�)

�

�

�

�

p

+

=

p2+m

2

p

�

(40)
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of [2]) they allow to construct all amplitudes of interest. The new diagramatic rule
reads

p q

= ⌧

f

(p, q) (34)

p q

= ⌧

g

(p, q) (35)

(36)

1.3 Coordinate space - the quark case

In coordinate space we have for quarks

S

F

(x, y) =

Z

d

d

p

(2⇡)d
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d

q

(2⇡)d
e

�ipx

S̃

F

(p, q)eiqy (37)

For the free propagator we find

S

(0)

F

(x� y) = (i@�
x

+m)�
F

(x� y) �
F

(x) =

Z

d

d

p

(2⇡)d
e

�ip·x i

p

2 �m

2 + i0
(38)

now

�(0)

F

(x) =

Z

d

d

p

(2⇡)d
i · e�ip·x

p

2 �m

2 + i0
=

Z

dp

+

(2⇡)

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ip

�
x

+

+ip·x

2p�
· i · e�ip

+

x

�

p

+ � p

2

+m

2�i0

2p

�

=

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ipx

2p�
⇥

✓(p�)✓(x�)� ✓(�p

�)✓(�x

�)
⇤

p

+

=

p2+m

2

2p

�

= �(0,+)

F

(x) +�(0,�)

F

(x) , (39)

with

�(0,±)

F

(x) = ±
Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ipx

2p�
✓(±p

�)✓(±x

�)

�

�

�

�

p

+

=

p2+m

2

p

�

(40)

From this result we obtain

S

(0)

F

(x) =

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ip·x

2p�



(p�+m)



✓(p�)✓(x�)

� ✓(�p

�)✓(�x

�)

�

+ n��
�(x�)

�

p

+

=

p2+m

2

p

�

= S

(0,+)

F

(x) + S

(0,�)

F

(x) + S

(0,⇤)
F

(x) (41)
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Configuration space: cuts at x-=0

p−1

p−2

x−

1

x−

2

x−

3

k−

p−1

p−2

p−3

x−

1

x−

2

k−

p−1

p−2

x−

1

x−

2

x−

3

k−

• diagrams to configuration space → momentum delta function as integral at 
each vertex + four momentum integral at each internal internal line 

• Feynman propagator in configuration space  

• divide xi- integral                                            → each of our diagrams cut by a 
line separating positive & negative light-cone time 

• s-channel kinematics [k-=p1- +p2- + …, all positive] → only s-channel type cuts 
possible (~vertical cuts)

p−1

p−2

p−3

x−

1

x−

2

k−



• recall:                                           i.e.  minus momentum flow  
not altered through interaction 

• recall: interaction placed at slice z-=0  
 
→ interaction must be always placed at a z-=0 cut of the diagram.  
Note: this applies equally to configuration and momentum space 

• evaluates already sum of a large fraction of diagrams (~50%) to zero 
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= ⌧
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with the free propagators

S̃

(0)

F

(p) =
ip�+m

p

2 �m

2 + i0
G̃

(0)

µ⌫

(p) =
id

µ⌫

(p)

p

2 + i0
d

µ⌫

(p) = �g

µ⌫

+
n

�
µ

p

⌫

+ p

µ

n

�
⌫

n

� · p (29)

and the interaction terms1

p q

= 2⇡�(p� � q

�)n��
Z

d

d�2

ze

�iz·(p�q)

·
n

✓(p�)[V (z)� 1]� ✓(�p

�)[V †(z)� 1]
o

(30)

p q

= �2⇡�(p� � q

�)2p�
Z

d

d�2

ze

�iz·(p�q)

·
n

✓(p�)[U(z)� 1]� ✓(�p

�)[U †(z)� 1]
o

(31)

with Wilson lines in fundamental (V ) and adjoint (U) represenation which read

V (z) ⌘ V

ij

(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)tc

U(z) ⌘ U

ab(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)T c

A

+,a(z�, z) = ↵

a(z)�(z�) (32)

with �iT

c

ab

= f

acb and A

+,a(x�, z) = �g�(x�)⇢
a

(x)/@2. For a produced real particle
the following generalized spinors and polarization vectors can be used2

ū(q, p) = ū(p)(2⇡)d�(d)(p� q) + ū(p)⌧
f

(p, q)S̃(0)

F

(q)

v̄(q, p) = v̄(p)(2⇡)d�(d)(p� q) + v̄(p)⌧
f

(�p,�q)S̃(0)

F

(�q)

u(q, p) = (2⇡)d�(d)(p� q)u(p) + S̃

(0)

F

(q)⌧
f

(q, p)u(p)

v(q, p) = (2⇡)d�(d)(p� q)v(p) + S̃

(0)

F

(�q)⌧
f

(�q,�p)v(p)

✏

(�)

µ

(q, p) = ✏

(�)

µ

(p)(2⇡)d�(d)(p� q) + ✏

(�)

⌫

(p)⌧
g

(p, q)G̃(0)

⌫µ

(q) (33)

For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula
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Configuration space can help

forbidden configurations: 
cannot be accommodated by 
vertical (s-channel type) cut



Can we Do better? ….  more constraints
consider complete configuration space propagator (free + interacting part)

 

We arrive for the configuration space propagator at the following result

S

F

(x, y) =

Z

d

d

p

(2⇡)d
d

d

q

(2⇡)d
e

�ipx

S̃

F

(p, q)eiqy

S

F

(x, y) =

Z

d

d

p

(2⇡)d
d

d

q

(2⇡)d
e

�ipx



S̃

(0)

F

(p)(2⇡)d�(d)(p� q) + S̃

(0)

F

(p)⌧
F

(p, q)S̃(0)

F

(q)

�

e

iqy

= S

(0)

F

(x� y)[✓(x�)✓(y�) + ✓(�x

�)✓(�y

�)]

+ ✓(x� > 0 > y

�)S(V,+)

F

(x, y) + ✓(y� > 0 > x

�)S(V

†
,�)

F

(x, y) (78)

Gluon propagator: The corresponding expression for the interacting gluon is

Eq. (61) = ✓(x� > 0 > y

�)

Z 1

0

dp�
(2p�)

Z

d

d�2

p

(2⇡)d�1

Z

d

d�2

q

(2⇡)d�2

e

�ip·x (d
µ↵

(p)d
↵⌫

(q))

·
Z

d

d�2

ze

�iz·(p�q)[U(z)� 1]eipy

� ✓(y� > 0 > x

�)

Z

0

�1

dp�
(2p�)

Z

d

d�2

p

(2⇡)d�1

Z

d

d�2

q

(2⇡)d�2

e

�ip·x (d
µ↵

(p)d
↵⌫

(q))

·
Z

d

d�2

ze

�iz·(p�q)[U †(z)� 1]eipy (79)

where p

+ = p

2

+m

2

2p

� and q

+ = q

2

+m

2

2p

� is implied. Separating o↵ again the terms without
Wilson line, we find again p

µ = q

µ. With

d

µ↵

(p)d
↵⌫

(q) = g

µ⌫

� n

�
µ

p

⌫

p

� � q

µ

n

�
⌫

p

� + n

�
µ

n

�
⌫

p · q
(p�)2

(80)

we have with p

2 = 0

d

µ↵

(p)d
↵⌫

(p) = d

µ⌫

(p). (81)

We therefore find

Eq. (61) = ✓(x� > 0 > y

�)G(U,+)

µ⌫

(x, y) + ✓(y� > 0 > x

�)G(U

†
,�)

µ⌫

(x, y)

�G

(0,+)

µ⌫

(x� y)✓(x� > 0 > y

�)�G

(0,�)

µ⌫

(x� y)✓(y� > 0 > x

�) (82)

with

G

(U,+)

µ⌫

(x, y) =

Z 1

�1

dp�
(2p�)2

Z

d

d�2

p

(2⇡)d�1

Z

d

d�2

q

(2⇡)d�2

e

�ip·x
d

µ↵

(p)d
↵⌫

(q)eiqy

·
Z

d

d�2

ze

�iz·(p�q)

✓(p�)U(z) (83)

G

(U

†
,�)

µ⌫

(x, y) = �
Z 1

�1

dp�
(2p�)2

Z

d

d�2

p

(2⇡)d�1

Z

d

d�2

q

(2⇡)d�2

e

�ip·x
d

µ↵

(p)d
↵⌫

(q)eiqy

·
Z

d

d�2

ze

�iz·(p�q)

✓(�p

�)U †(z) (84)

21

obtain free propagation for 
• x-,y-<0 (“before interaction”) 
• x-,y->0 (“after interaction”) 

propagator proportional to  
complete Wilson line V (fermion)  
or U (gluon) if we cross  
cut at light-cone time 0 

no direct translation to momentum space  
adding free propagation & interaction→ mixing of different mom. space diagrams 
but strong constraints on the structure of the full result

z
− = 0

x y

z
− = 0

x y



 

regions applies also to this new representation. As a consequence we can simple read
of the Wilson line structure of each decomposition, without going into any detailed
calculation. In particular we find for the real corrections
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Configuration Space predicts which Operators have non-zero coefficients

momentum space: necessary coefficients from only 4 (instead of 16) diagrams  
(cancelation of all other contributions verified by explicit calculations)

virtual corrections: similar result,  
                               necessary coefficients from 8 (instead of 32) diagrams 



Structure of Wilson correlators  

for 3 particle production in DIS



• e.g. inclusive DIS at LO:  target interaction through 
color dipole 

• 2 parton final state: new correlator — the 
quadrupole 

• for large Nc at most quadrupoles in n-particle 
production; finite Nc  n-particle ≜n correlators  
[Dominguez, Marquet, Stasto, Xiao; Phys.Rev. D87 (2013) 034007] 

Wilson lines build correlators  
                   = different gluon distributions           

(in general more than one) 
Current work virtual photon @ NLO
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+ express adjoint Wilson lines in terms of fundamental 

+ make use of Fiery identities 

isolate Wilson 
line & color 
generators of   
amplitudes 

+ square them 
(Mathematica) 

 

regions applies also to this new representation. As a consequence we can simple read
of the Wilson line structure of each decomposition, without going into any detailed
calculation. In particular we find for the real corrections
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Note that I

R

1

is imaginary and I

R

2

is real i.e. the di↵erent phases of the coe�cients
make sense. Extracting the regarding overall factors from the integral we have
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3.6 Squared amplitudes - Wilson lines and color

To determine the complete squared amplitde we require – apart from A
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· A⇤
j

, i, j =
1, . . . , 4 – the corresponding contribution for the W

i

, i.e. tr(W
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), i, j = 1, . . . , 4.
To reduce the color structure we use the following implementations of the well-known
Fierz identity
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At the level of S-matrix elements we obtain the following results
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Altogether we have seven independent color structures
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At the level of S-matrix elements we obtain the following results
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Altogether we have seven independent color structures
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with

DIS: dipole and 
quadrupole 
sufficient even at 
finite NC 
 
altogether 7 in-
dependent terms



Loop integrals



something slightly strange: 
Loop Integrals also for Real corrections

technical reason:  
• momentum space amplitudes obtained from field correlators during LSZ 

reduction procedure 
• integration over coordinates at vertices yields delta functions which evaluate 

momentum integrals trivially 
• here: coordinate dependence of background field → some of the delta 

functions absent

intuitive picture:  
 
background field = t-channel gluons interacting 
with the target 
→ naturally provide a loop which is factorized & 
(partially) absorbed into the projectile in the 
high energy limit



3 particle production:

p

k

q

l

−q − k

−k1

l − k1

a 1-loop and a 2-loop topology 

                   

                                               k1 and k2 are loop momenta 
                                               new complication: exponentials/Fourier factors 

conventional: e.g. k1
+ integration by taking residues, then transverse integrals 

                      particular for 2 loop case: complicated transverse integrals 

developed a new technique 
★ complete exponential factors to 4 dimensions 
★ evaluate integral using “standard” momentum space techniques

p

k

q

l

k2

k2 − k1

−k1

l − k1



a 1-loop example:
 

There is apparently a certain overlapp between certain classes. It is important to note
that each diagram should be only calculated once; however any diagram not present in
the above classes is automatically zero and needs not to be evaluated. An even stronger
constraint can be obtained from Eq. (89) which states that it is su�cent to search for
the coe�cent of certain combinations of Wilson lines, summarized in Eq. (91). By
explicit calculation (through collecting residues in plus momenta) it can be shown that
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The only diagrams which need to evaluated for the triangle graph are therefore

.

(98)

To obtain the full result it is then necessary to drop all factors ‘�1’ in Eqs. (30), (31)
and to subtract the contribution without interaction – which in a calculation with
propagators Eq. (78) and Eq. (85) is always contained.

3 A list of generalized Feynman integrals

Integrations are performed in d = 4 + 2✏ dimensions. The pole prescription are for
quadratic (=standard Feynman) propagators is always taken as p2 ! p
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start with integral which contains 
delta functions 
transverse exponential factors

introduce relative coordinate r=x-y 
represent delta function by integral 
introduce dummy integral over r+ 

→obtain 4(d) dimensional integral 
next step: 

 Schwinger/𝜶-parameters 
 complete square in exponent, Wick rotation, Gauss integral 
reconstruct delta functions to evaluate (some) of the 𝜶-parameter integrals  

to facilitate these steps for 2, 3 loops (virtual!): “developed” Mathematica package 
ARepCGC; implements necessary text-book methods [V. Smirnov, Springer 2006] 



Complete result in terms of 2 functions

Ka(x) modified Bessel function of 2nd kind (Macdonald function) 

require f(a) for a=0,-1 and h{a,b} for a=0,-1, -2 and b = 0, -1 

further reduction possible due to integration by parts identities 

h{a,b} can be directly evaluated for b=-1; general case into infinite sum over 
Bessel functions;  
numerics:  keeping integral might be most stable 

massive case trivial as long one accepts one remaining integration for h{a,b} 

The result is therefore expressed in terms of 2 functions f and h (formerly denoted as
g) which are defined as
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3.4 Relation of the integrals to those defined in NotesForDraft.pdf

Restricting for the time being to the mass-less case we have

Int

R1

([µ
1

, µ

2

, µ

3

], 1, 1, 1; p) ⌘
Z

d

4

k

1

(2⇡)4
k

µ

1

1

(l � k

1

)µ2(p + k)µ3

[k2
1

][(l � k

1

)2][(p + k)2]

=̂ I

µ

1

µ

2

µ

3

R

1

(p + k, q|x
t

, y

t

)

Int

R1

([µ
1

, µ

2

, µ

3

], 1, 1, 1; q) ⌘
Z

d

4

k

1

(2⇡)4
k

µ

1

1

(l � k

1

)µ2(p + k)µ3

[k2
1

][(l � k

1

)2][(q + k)2]

=̂ I

µ

1

µ

2

µ

3

R

1

(q + k, p|y
t

, x

t

)

Int

R2

([µ
1

, µ

2

, µ

3

, µ

4

], 1, 1, 1, 1; k
1

) ⌘
Z

d

4

k

1

(2⇡)4
d

4

k

2

(2⇡)4
k

µ

1

1

(l � k

1

)µ2(k
1

� k)3)µ3

k

µ

4

3

[k2
1

][(l � k

1

)2][(k
1

� k

3

)2][k2
3

]

=̂ I

µ

1

µ

2

µ

3

µ

4

R

2

(p, q, k|x
t

, y

t

, z

t

)

Int

R2

([µ
1

, µ

2

, µ

3

, µ

4

], 1, 1, 1, 1; l � k

1

) ⌘
Z

d

4

k

1

(2⇡)4
d

4

k

2

(2⇡)4
(l � k

1

)µ1

k

µ

2

1

(l � k

1

� k)3)µ3

k

µ

4

3

[(l � k

1

)2][k2
1

][(l � k

1

� k

3

)2][k2
3

]

=̂ I

µ

1

µ

2

µ

3

µ

4

R

2

(q, p, k|y
t

, x

t

, z

t

) (182)

where we use the symbol ‘ =̂ ’ to denote that the integrals of NotesForDraft.pdf

do not denote the coordinate dependence explicitly and we have absorbed factors �-
functions with their corresponding factors of 2⇡ in the integral. The relations for the
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From Gamma matrices to cross-sections



 Dirac traces from Computer Algebra Codes

• possible to express elements of Dirac trace in terms of 
scalar, vector and rank 2 tensor integrals 

• Evaluation requires use of computer algebra codes; 
use 2 implementations:  
FORM [Vermaseren, math-ph/0010025]  &  
Mathematica packages FeynCalc and FormLink 

• result (3 partons) as coefficients of “basis”-functions f(a) and 
h(a,b); result lengthy (~100kB), but manageable 

• currently working on further simplification through integration 
by parts relation between basis function (work in progress)



Next step: complete NLO corrections 
• integrate one of the produced particles → additional divergences 

- rapidity divergence: JIMWLK evolution of dipoles & quadrupoles (and 
their products) 

- high MX diffraction: require extension of JIMWLK to exclusive reactions  
[Hentschinski, Weigert, Schäfer, Phys.Rev. D73 (2006) 051501] 

- soft singularities cancel between real & virtual 

• for ɣ*→hh + X: final state collinear divergences: fragmentation functions 

• for q → jj + X etc: initial state collinear divergences: parton distribution functions 
+ need to take care of potential soft factors 

work in progress 

related work:  
[Boussarie, Grabovsky, Szymanowski, Wallon, JHEP1409, 026 (2014)] 
[Balitsky, Chirilli, PRD83 (2011) 031502, PRD88 (2013) 111501] 
[Beuf, PRD85, (2012) 034039]



Summary
• CGC is a systematic approach to high gluon densities in high 

energy collisions — used to fit a wealth of data (ep, pp, pA, AA) 

• LO CGC works (sometimes too) well; qualitative/semi-
quantitative description of data requires NLO 

• to arrive at a precise picture of saturated gluon densities we 
need precision — both experiment and theory 

• Di-jet/-hadron angular correlations offer a unique probe of the 
CGC  (both eA and pA) 

• Tri-jet/-hadron should be even more discriminatory



• developed techniques (diagram reduction, integrals) - 
might have been available before, but never been 
exploited in a systematic way for this kind of calculation 

• proof of concept for NLO momentum space calculation  
advantage: benefit from standard techniques for higher 
orders in QCD  
(important: soft- and collinear singularities!)  

• concentrate on DIS, but results (integrals, codes) 
extends beyond →3-jets, NLO correction for saturation/
CGC observables in e.g. pA at RHIC/LHC

Summary



Danke!



DIS & QCD

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for ��+nucleon/-us! X

e

� + p[A] ! e
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⇤ + p ! X (up to QED corrections)
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Martin Hentschinski RIKEN/BNL Lunch Time Talk

Photon virtuality
Q2 = �q2

Mass of system X
W = (p + q)2

= M2
N

+2p · q �Q2

Bjorken x =
Q2

2p · q

Resolution
� ⇠ 1

Q

Inelasticity y =
2p · q

2p · k

special cases:
elastic scattering W 2 = M2

N

x = 1
inelastic scattering: x < 1

Martin Hentschinski (ICN-UNAM) The glue that binds us all August 19, 2015 13 / 96
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conventional 
pQCD 

(make use of 
know techniques)

inclusion of finite 
masses  

(charm mass!)

intuition: 
interaction at t=0 

with Lorentz 
contracted target

momentum space well explored complication, but 
doable

lose intuitive 
picture at first -> 

large # of 
cancelations

configuration 
space poorly explored very difficult many diagrams 

automatically zero 

our approach:  
work in momentum space, but exploit relation to 
configuration space to set a large fraction of all 

diagrams to zero

momentum vs. configuration 
space 



the lC-Time Slice x-=0: ‘cuts’ 
through diagrams
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Searching for saturation effects
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non-perturbative region

ln
 Q

2

Q
2
s(x)

saturation

JIMWLK
BK

DGLAP

BFKL

αs <<  1

αs ~ 1



Theory predictions for high & saturated 
gluon densities

 x =Q2/2p･q→0 limit corresponds to perturbative 
 high energy limit  2p･q→∞ for fixed resolution Q2 

• make use of factorisation of cross-sections in the  
high energy limit 

• allows to resum interaction of quarks & gluons with strong gluon field to all orders in 
the strong coupling→resummation of finite density effects 

• DIS X-sec. as convolution of “photon wave function” (process-dependent) and  
“color dipole factor”  
(universal, resums ln1/x) 

• physical picture: virtual photon  
splits into color dipole (quark-  
antiquark pair) which   
interacts with Lorentz contracted  
 target field  

Key measurements at an EIC

Searching for saturation e↵ects: Dihadron-decorrelation
Saturation ⌘ high gluon densities multiple scatterings

�

⇤

dilute regime: 1 gluon

with small k

T

�

⇤

!
�

⇤

x ! 0: a single interaction with a strong & Lorentz

contracted gluon field

expect di↵erence in angular distribution of detected di-hadrons

, y=0.72=1 GeV2Q

 (rad)φΔ
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)φ
Δ

C
(

0
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0.2

0.25

ep

eCa
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20 GeV on 100 GeV

 (rad)φΔ
2 2.5 3 3.5 4 4.5

)φ
Δ

C
(

0

0.1
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0.3

0.4

e+Au - no-sat

eAu - sat

pT
trig > 2 GeV/c

1 GeV/c < pT
assoc < pT

trig

0.2 < zh
trig, zh

assoc < 0.4
1 < Q2 < 2 GeV2

0.6 < y < 0.8

20 GeV on 100 GeV
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with the free propagators

S̃

(0)

F

(p) =
ip�+m

p

2 �m

2 + i0
G̃

(0)

µ⌫

(p) =
id

µ⌫

(p)

p

2 + i0
d

µ⌫

(p) = �g

µ⌫

+
n

�
µ

p

⌫

+ p

µ

n

�
⌫

n

� · p (29)

and the interaction terms1

p q

= 2⇡�(p� � q

�)n��
Z

d

d�2

ze

�iz·(p�q)

·
n

✓(p�)[V (z)� 1]� ✓(�p

�)[V †(z)� 1]
o

(30)

p q

= �2⇡�(p� � q

�)2p�
Z

d

d�2

ze

�iz·(p�q)

·
n

✓(p�)[U(z)� 1]� ✓(�p

�)[U †(z)� 1]
o

(31)

with Wilson lines in fundamental (V ) and adjoint (U) represenation which read

V (z) ⌘ V

ij

(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)tc

U(z) ⌘ U

ab(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)T c

A

+,a(z�, z) = ↵

a(z)�(z�) (32)

with �iT

c

ab

= f

acb and A

+,a(x�, z) = �g�(x�)⇢
a

(x)/@2. For a produced real particle
the following generalized spinors and polarization vectors can be used2

ū(q, p) = ū(p)(2⇡)d�(d)(p� q) + ū(p)⌧
f

(p, q)S̃(0)

F

(q)

v̄(q, p) = v̄(p)(2⇡)d�(d)(p� q) + v̄(p)⌧
f

(�p,�q)S̃(0)

F

(�q)

u(q, p) = (2⇡)d�(d)(p� q)u(p) + S̃

(0)

F

(q)⌧
f

(q, p)u(p)

v(q, p) = (2⇡)d�(d)(p� q)v(p) + S̃

(0)

F

(�q)⌧
f

(�q,�p)v(p)

✏

(�)

µ

(q, p) = ✏

(�)

µ

(p)(2⇡)d�(d)(p� q) + ✏

(�)

⌫

(p)⌧
g

(p, q)G̃(0)

⌫µ

(q) (33)

For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula

7

DIS & QCD

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for ��+nucleon/-us! X

e

� + p[A] ! e

� + X = �

⇤ + p ! X (up to QED corrections)

k

p X

k'

q

y =
q · p

k · p

“inelasticity”

Q

2 = �q

2 = �(k � k

�)2 “resolution”

x

Bj

=
Q

2

2p · q

Parton model: fraction of nucleon

momentum carried by struck quark

unpolarized + neutral charge current

hadronic tensor � proton structure functions F2 & F

L

d

2
�

�

�
p�X

dx

Bj.

dQ

2
=

2��

2

x

Bj.

Q

4

��
1 + (1 � y)2

�
F2(x

Bj.

, Q

2) � y

2
F

L

(x
Bj.

, Q

2)
�

Martin Hentschinski RIKEN/BNL Lunch Time Talk

Photon virtuality
Q2 = �q2

Mass of system X
W = (p + q)2

= M2
N

+2p · q �Q2

Bjorken x =
Q2

2p · q

Resolution
� ⇠ 1

Q

Inelasticity y =
2p · q

2p · k

special cases:
elastic scattering W 2 = M2

N

x = 1
inelastic scattering: x < 1
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Current work virtual photon @ NLO

Search for saturation requires precision on both sides

1
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2
)

0.1

EIC
 √s =

 90 G
eV, 0

.01 ≤ y 
≤ 0.95

EIC
 √s =

 45 G
eV, 0

.01 ≤ y 
≤ 0.95

Measurements with A ≥ 56 (Fe):

 eA/μA DIS (E-139, E-665, EMC, NMC)

 νA DIS (CCFR, CDHSW, CHORUS, NuTeV)

 DY (E772, E866)

perturbative

non-perturbative

geom
etric scaling

ln x

non-perturbative region

ln
 Q

2

Q
2
s(x)

saturation

JIMWLK
BK

DGLAP

BFKL

αs <<  1

αs ~ 1

need:

I high precision for DGLAP
evolution deviations

I high precision of saturated
nucleus/DIS in presence of
high & saturated gluon
densities

Color Glass Condensate formalism (CGC) e.g. [McLerran, Venugopalan; PRD 49, 2233

(1994)], ...:
�⇤

! �⇤ x ! 0: a single interaction with

strong & Lorentz contracted gluon

field

��

⇤
A

L,T

(x, Q2) = 2
X

f

Z
d2
bd2

r

1Z

0

dz
��� (f)

L,T

(r, z; Q2)
���
2 N (x, r, b)
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