

Jets in pp and p-Pb Collisions measured with ALICE

Oliver Busch

Tsukuba University University of Heidelberg

for the ALICE collaboration

- introduction
- jet fragmentation in pp collisions
- PID in jets in pp
- jets in p-Pb collisions
- jet Q_{pPb}
- strangeness in jets in p-Pb

Introduction

Jet Fragmentation

- initial hard (high Q²) scattering: high-p_T, quasi-free partons
- Q² evolution: parton shower, gluon cascade
- hadronization at ~Λ_{QCD}

Jet Reconstruction

- establish correspondence between detector measurements / final state particles / partons
- two types of jet finder:
 - iterative cone
 - sequential recombination (e.g. anti-k_T)
- resolution parameter R

Jets at ALICE (LHC run 1)

- charged particle tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber
 - full azimuth, |η |< 0.9 p_T > 150 MeV/c
- EMCal :
 - neutral particles
 - $-\Delta \phi = 107^{\circ}, |\eta| < 0.7$
 - cluster $E_T > 300 \text{ MeV}$

- jet trigger with EMCal and TRD
- `charged' (tracking) jets and `full' jets
- tracking jets: suitable especially under harsh pile-up conditions

Results from pp Collisions

- measured in minimum bias collisions at \sqrt{s} = 7 TeV
- good agreement with ATLAS charged jet measurements (despite slightly different acceptance and track p_T range)

pp Jet Fragmentation at 7 TeV

筑波大学 University of Tauku

- $z^{ch} = p_T^{\text{particle}} / p_T^{\text{jet,ch}}$ distributions of charged particles in charged jets at $\sqrt{s} = 7$ TeV
- bulk production at low z:
 ~ 5-10 charged particles per jet
- for z > 0.2 distributions consistent for all jet p_T: 'scaling'

z Scaling in QCD

- MLLA: analytic parton shower calculation, NLL resummation
- hadronization not explicitly included
- low-ξ (approximate) scaling a feature of parton shower (with some caveats about validity as ξ-> 0)
- down to which jet p_T will this work ?

CDF, PRD 68 (2003) 012003

z Scaling: Low-p⊤ Jets

- down to 10 GeV/c charged jet p_T !
- deviations for 5-10 GeV/c jets
- low-p_T jets and their properties important in the context of pp UE studies (high-multiplicity pp)
- do we see increasing influence of non-perturbative effects on essentially free partons, or non-perturbative objects (e.g. UE 'fake jet' clusters) ?

Event Generator Comparison

- low-p_T jets rather well described by PYTHIA (p_T ordered parton shower, Lund string fragmentation)
- Perugia2010NoCR OK, no need to evoke MPI coherence
- 5 GeV/c hadron clusters look 'jetty' and can be described by single hard scattering + fragmentation, however non-perturbative effects are important (even at high z ?!)

PID in Jets : `TPC Coherent Fit'

- particle identification via specific ionization in TPC ('dE/dx'):
- TPC coherent fit: use energy loss model parameterization as input, adjust model parameters and particle fractions `on the fly' during fit E_{120}
- regularization requiring continuity of particle fractions

Multi Template Fit

- TPC multi-template fit
 - best possible description of dE/dx from external reference
 - parametrize dependences on $\eta,$ TPC nClusters
 - templates in transverse momentum (z, xi) slices

- pp (s=7 TeV, p_{T, jet}^{ch} 10-15 GeV/c, z^{ch} 0.6-0.65 Entries ALICE Preliminary anti-k., R=0.4 Multi-template fit +π', template 10 +K', template p+p, template +e', templat 10 (Data - Fit) / Data 0.4 0.2 -0.3 0.8 0.6 0.9 1.1 1.3 1.2 $\Delta'_{\pi} = dE/dx / \langle dE/dx \rangle_{\pi}$ ALI-PREL-70018
- dE/dx in one z slice (0.6 < z < 0.65), 10-15 GeV/c fitted with 4 templates
- complementary and consistent with TCF

Particle Identified Fragmentation

- identified charged hadrons in charged jets at $\sqrt{s} = 7 \text{ TeV}$
- π, K, p, 5 < p_T^{ch jet} < 20 GeV/c
- z scaling for all species: no strong hadronization effects

Particle Ratios in Jets

- strangeness content strongly enhanced for $z^{ch} \rightarrow 1$
- leading baryons suppressed

Event Generator Comparison

- comparison to PYTHIA6 (p_T ordered parton shower, Lund string fragmentation)
- data reasonably well described
- well reproduced by Perugia0 NoCR tune without color reconnections

Results from p-Pb Collisions

Jets in p-Pb Collisions

- sensitive to cold-nuclear matter effects :
 - nuclear modification of the parton distribution
 - k_T broadening and energy loss in cold nuclear matter
- in p-Pb collisions at LHC, onset of collectivity observed in high-multiplicity events
- hydro in small systems: high initial Temperature ?
- \hat{q} ~ T³
- jet quenching in p-Pb ?
 jet spectra a.f.o. centrality
 - E. Shuryak ,I. Zahed, Phys.Rev. C88 (2013) 4

Centrality in p-Pb Collisions

'centrality' related to collision geometry

• in Pb-Pb:

- Glauber MC + NBD fit to measured multiplicity distribution
- strong correlation multiplicity N_{part} b
- distance between 2 nuclei in Pb nucleus: (1 / 0.17 fm⁻³)^{1/3} ~ 1.8 fm ~ 2 x r_{Proton}
 -> in p-Pb, correlation multiplicity - b much worse
- N^{Part} ~ 7, small !
 -> weak correlation multiplicity N_{part}
 -> hard processes can easily bias multiplicity selection

Hybrid Model

- determine event classes from energy in zero-degree calorimeter (115 m from interaction point - no multiplicity bias)
- calculate N_{coll} from signal in VOA forward-scintillator
- $N_{coll, Pb-side}$: assume charged particle multiplicity is proportional to N_{part} - 1 = N_{coll}

ALICE, Phys. Rev. C 91 (2015), 064905

Jet Background Subtraction

- jet reconstruction in p-Pb: background from underlying event not related to hard parton fragmentation
- estimate average background density from k_T clusters and subtract jet-by-jet

4 centrality bins

ALICE

R = 0.2

R = 0.4

Nuclear Modification Factor

- $Q_{\text{pPb}} = \frac{\text{p-Pb yield}}{\text{pp x-section}} \cdot \frac{1}{T_{\text{pPb}}}$
- <T_pPb> : nuclear overlap function from Glauber Calculation using $N_{\text{coll, Pb}}$ side
- no significant nuclear modification observed

Cross Section Ratio

- spectral ratio R = 0.2 / R = 0.4 sensitive to radial jet structure
- no significant centrality dependence

Strangeness Production in p-Pb

- inclusive strangeness production in central Pb-Pb collisions: strong enhancement of Λ/K⁰_S ratio at intermediate p_T
- involving several phenomena:
 - flow
 - hadronization through recombination ?
 - jet fragmentation
- qualitatively similar observation in p-Pb
- strangeness in jets in p-Pb: separate soft and hard processes

Strangeness in Jets in p-Pb

- reconstruct V⁰s and jets independently
- match V⁰s to jet cone: R(V⁰, jet) < Rj^{et}
- signal extraction via invariant mass, subtraction of combinatorial background

p⊤ Spectra

- transverse momentum spectra of K_{S}^{0} and Λ in charged jets with $p_{T,jet} > 10$ GeV/c
- normalized per event and unit acceptance $(\Delta \eta \Delta \phi)$

$\Lambda / K^0_S Ratio$

- Λ / K⁰_S ratio in jets in Minimum Bias collisions
- significantly lower than inclusive ratio

- results for 2 VOA multiplicity classes
- no significant dependence on multiplicity

PYTHIA Comparison

- PYTHIA8 pp : Λ / K⁰_S ratio in jets similar to inclusive
- simulations describe strangeness in jets, but not inclusive production

Summary

- charged jet fragmentation: dN/dz scaling in low-p_T jets
- identified kaons, protons and charged pions in jets well described by PYTHIA 6 simulations without CR
- charged jets in p-Pb collisions: no nuclear modification observed for central collisions
- strangeness in p-Pb: strange baryon/meson ratio smaller than inclusive production, no event multiplicity dependence

- Backup -

ALICE in run 2: DCal

• run 2: DCal upgrade

ALICE

- significantly extended jet acceptance
- back-to-back in azimuth (di-jet topology)

PHENIX jet RdAu

• PHENIX d-Au:

- suppression in central events
- enhancement in peripheral events
- can not be explained by trivial multiplicity bias

arXiv: 1509.04657 [nucl-ex]

PHENIX and ATLAS

ATLAS, 1412.4092 [nucl-ex]

- similar observation by ATLAS
- initial state effect scaling with x ?

A. Hanks, QM 15

Jet finder comparison

- kT: sequential recombination
- SISCone: cone algorithm

ALI-PUB-89997

nucl-ex/1411.4969

Method comparison

- uncorrected hadron fractions from Multi-Template Fit and **TPC Coherent Fit**
- 2 complementary methods obtain consistent results

Hadrons in heavy-ion collisions

- high- p_T hadrons `proxy' for jet
- jet quenching for charged hadrons, Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
 - $R_{AA}(p_{\rm T}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta \,\mathrm{dp_T}}{\mathrm{d}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}}/\mathrm{d}\eta \,\mathrm{dp_T}}$
- hadron observables biased towards leading fragment
- \rightarrow study the effect for fully reconstructed jets

Jet nuclear modification factor

- strong suppression observed, similar to hadron RAA
 - \rightarrow parton energy not recovered inside jet cone

Phys.Lett. B746 (2015) 1

 increase of suppression with centrality

JEWEL: PLB 735 (2014) YaJEM:PRC 88 (2013) 014905

