Search for collective phenomena in high multiplicity pp and p-Pb collisions with ALICE

Vytautas Vislavicius on behalf of the ALICE collaboration QCD challenges at the LHC: from pp to AA Taxco, Mexico 2016-01-19

Outline

- Motivation
- Particle Identification in ALICE
- Results: $\pi/K/p/\Lambda/\Xi/\Omega$ spectra in multiplicity bins
- $\pi/K/p/\Lambda/\Xi/\Omega$ ratios vs. multiplicity: comparison among systems
- Comparison to MC event generators
- Comparison to thermal model calculations using the strangeness-canonical ensemble
- Summary

Motivation

pA and AA: qualitatively same features observed

♦ AA:

- Strangeness enhancement/canonical suppression in pp
- Baryon/meson ratio enhancement

◆ pA:

 Progressive release of canonical suppression with increasing system size/strangeness enhancement

Baryon/meson ratio qualitatively similar to AA

Motivation

- What happens in pp?
 - Measured in $\sqrt{s} = 900$ GeV and 7 TeV, but...

∆/**K**°

0.8

0.6

0.4

0.2

0

1 2 3 4

5 6

• MB $< dN_{ch}/d\eta >$ is not high enough...

Motivation

- What happens in pp?
 - Measured in \sqrt{s} = 900 GeV and 7 TeV, but...

∆/**K**°

0.8

0.6

0.4

0.2

pp, $\sqrt{s_{pp}} = 7 \text{ TeV}$

.....اىيىياسىلىسلىسلىسلىسلىسا

5 6

1 2 3 4

78

p_ (GeV/c)

- MB $< dN_{ch}/d\eta >$ is not high enough...
- Select highest multiplicity events

ALI-PUB-58061

Particle Identification with ALICE

$\pi/K/p PID$

Int.J.Mod.Phys. A29 (2014) 1430044

π: [0.1 – 0.6] GeV/c K: [0.2 – 0.6] GeV/c p: [0.3 – 0.6] GeV/c

Detectors used for charged LF PID:

- Inner Tracking System (ITS)
 - also: trigger, tracking, vertex
- Time Projection Chamber (TPC)
 - also: tracking
- Time-Of-Flight (TOF)

$\pi/K/p PID$

Int.J.Mod.Phys. A29 (2014) 1430044

 π : [0.2 – 0.5] GeV/c K: [0.25 – 0.6] GeV/c p: [0.4 – 0.8] GeV/c + relativistic rise

Detectors used for charged LF PID:

- Inner Tracking System (ITS)
 - also: trigger, tracking, vertex
- Time Projection Chamber (TPC)
 - also: tracking
- Time-Of-Flight (TOF)

$\pi/K/p PID$

Int.J.Mod.Phys. A29 (2014) 1430044

π: [0.5 – ~3] GeV/*c* K: [0.6 – ~3] GeV/*c* p: [0.8 – ~4] GeV/*c*

Detectors used for charged LF PID:

- Inner Tracking System (ITS)
 - also: trigger, tracking, vertex
- Time Projection Chamber (TPC)
 - also: tracking
- Time-Of-Flight (TOF)

Strange baryon reconstruction

Multiplicity estimation

V0M (%)	$<$ d $N_{\rm ch}$ /d η >	V0M (%)	$<$ d $N_{\rm ch}$ /d η >	
0 - 0.1	25.3 ± 0.8	0.1 - 1	20.8 ± 0.6	
1 - 5	16.5 ± 0.5	5 - 10	13.5 ± 0.4	
10 - 15	11.5 ± 0.3	15 - 20	10.1 ± 0.3	
20 - 30	8.4 ± 0.3	30 - 40	6.7 ± 0.2	
40 - 50	5.4 ± 0.2	50 - 70	3.9 ± 0.1	
70 - 100	2.3 ± 0.1	0 - 100	6.0 ± 0.2	

Vytautas Vislavicius

Multiplicity estimation:

VOM – multiplicity estimator at forward

rapidities

Two plastic scintillators:

V0A ($2.8 < \eta < 5.1$) and V0C ($-3.7 < \eta < -1.7$)

- V0M = V0A + V0C
- Only events with at least one charged particle at midrapidity are considered for event samples
- For cross-checks, studies based on the average number of charged tracks at midrapidity ranges have been done, but auto-correlation biases have been observed

π & p spectra vs multiplicity

• Hardening with increasing multiplicity • Flattening at high p_{τ} (ratios to MB) –

Multi-parton interaction (MPI) scaling?

*p*_T-differential spectra in VOM multiplicity bins
 Ratio to inclusive spectra (INEL>0) (à la "*R*_{pp}")

K & A spectra vs multiplicity

Similar effects seen in strange hadron spectra:

Vytautas Vislavicius

14

$\Xi \& \Omega$ spectra vs multiplicity

And even for multi-strange hadrons:

p_{T} -differential ratios vs. multiplicity

K/ π , p/ π ratios:

- p/ π shows much stronger variation with multiplicity than K/ π
 - Mass ordering
- But there is more...

p_{T} -differential ratios vs. multiplicity

0.4

0.35E

0.3F

 $(p+\overline{p})/(\pi^++\pi^-)$, pp $\sqrt{s}=7$ TeV,

 \blacksquare 0-100%, $\langle \mathrm{d} \textit{N}_{\mathrm{ch}}/\mathrm{d}\eta
angle$ =6.0 (ref.)

VOM Multiplicity:

Baryon/meson ratios:

- Qualitatively similar trends in all systems
- Crossing point ~ 1.5 GeV/c
- Different magnitudes, but note different multiplicity densities

 $p_{_{\rm T}}$ (GeV/c)

20

pp

p_{T} -differential ratios vs. multiplicity

Strange baryon/meson ratios:

Same trends for strange hadrons!

Integrated yield ratios vs. multiplicity

Integrated yield ratios: comparison between systems

- Levy-Tsallis fits to p_{τ} -differential spectra (serves as extrapolation to p_{τ} =0; negligible contribution from p_{τ} →∞ extrapolation)
- Both K/π and p/π ratios consistent between different colliding systems for the similar $dN_{ch}/d\eta$

***Multiplicity uncorrelated errors are not shown here, but will be included in the forthcoming publication

Comparison to MC event generators

Integrated yield ratios:

- 4 different Pythia tunes were used
- Color reconnection has similar effect in all the tunes
- None of the tunes can describe both K/π and p/π ratios quantitatively. This holds for tunes with and without color reconnection
- What about strange baryons?

Comparison to MC event generators

Ratios vs. multiplicity in pp:

 $\Xi^+\overline{\Xi}^+$) / $(\pi^-+\pi^+)$

3

2

0

ALI-PREL-98750

- Smooth trend in pp \rightarrow pA \rightarrow AA with multiplicity Λ Λ π and Ξ/π reach predicted grand canonical saturation values
- $\Rightarrow \Omega/\pi$ stays below
- Pythia 6 & 8 do not describe the data

Color reconnection has little impact on predicted multiplicity dependence of strangeness production

MC tunes do not show rise in multiplicity, while data does!

GSI-Heidelberg model

Pb-Pb - T_{ch}=156 MeV

MC productions - pp (s=7TeV Pvthia6-Perugia2011-NoCR

Pvthia8-Monash-WithCR

10

Pythia6-Perugia2011-WithCR

THERMUS V3.0 model

ALICE

•

 10^{2}

Pb-Pb - Tab=155 MeV

Vytautas Vislavicius

21

ALI-PREL-98754

Baryon-to-pion ratios: comparison to ppINEL

pp and pA ratios normalized to pp_INEL

 Protons: consistent with unity in considered multiplicity range

 Slope increases with strangeness content, not related to baryon number related increase

Strangeness-related increase of ratio vs. multiplicity

Comparison to thermal model calculations using strangeness-canonical ensemble

Another look into pp and pA Λ/π , Ξ/π , Ω/π approaching grand canonical saturation limit in a similar way

Comparison to thermal model calculations using strangeness-canonical ensemble

Another look into pp and pA

• Λ/π , Ξ/π , Ω/π approaching grand canonical saturation prediction in same way

- Consider strange hadron to π ratio at high multiplicity limit
- Trend for Λ/π , Ξ/π , Ω/π described by

THERMUS (qualitatively)

Recap:

Measuring the ratios in pp allows us to test the validity of QCD-based event generators (Pythia, Dipsy, etc.). It is one of the goals of this workshop to see how well they can describe the strangeness enhancement while keeping p/π ratios flat.
 Macroscopic models (e.g. Thermal model) are well suited to describe the data

Summary

Identified hadron production as a function of event multiplicity in pp collisions at $\sqrt{s} = 7$ TeV has been measured and reported by the ALICE collaboration

- Measured p_{T} -differential hadron spectra harden with multiplicity
- Ratios of p_{T} -differential spectra flatten out at high p_{T}
- p_{τ} -differential baryon-to-meson ratios show significant evolution from low to high multiplicity; same qualitative behaviour observed in p-Pb and Pb-Pb collisions.
- Strange hadron to pion ratios:
 - Qualitatively similar among pp and p-Pb
 - Enhanced strange particle production with multiplicity observed
 - Trends not reproduced by Pythia 6 & 8

$< dN_{ch}/d\eta > vs. VOM$

V0M (%)	$<$ d $N_{\rm ch}$ /d η >	V0M (%)	$<$ d $N_{\rm ch}$ /d η >
0 - 0.1	25.3 ± 0.8	0.1 - 1	20.8 ± 0.6
1 - 5	16.5 ± 0.5	5 - 10	13.5 ± 0.4
10 - 15	11.5 ± 0.3	15 - 20	10.1 ± 0.3
20 - 30	8.4 ± 0.3	30 - 40	6.7 ± 0.2
40 - 50	5.4 ± 0.2	50 - 70	3.9 ± 0.1
70 - 100	2.3 ± 0.1	0 - 100	6.0 ± 0.2

Particle Identification in ALICE

 $\pi/K/p$: 5 different analysis, combined into one:

Analysis	PID	$p_{\rm T}$ Range (GeV/c)			Analysis
	Technique	π	K	р	Region
ITS stand-alone	$n-\sigma$ cuts on ITS	0.1-0.6	0.2-0.6	0.3-0.6	<i>y</i> < 0.5
Bayesian PID	Bayesian probability	0.2-2.5	0.3 – 2.5	0.5 - 2.5	<i>y</i> < 0.5
TPC-TOF	n- σ cuts on TPC and TOF	0.25 – 1.2	0.3 – 1.2	0.45 - 2.0	<i>y</i> < 0.5
TPC-TOF Fits	n- σ fits to TPC and TOF	0.25 - 2.5	0.3 – 2.5	0.45 - 2.7	y < 0.5 (TPC) $ \eta < 0.2 (\text{TOF})$
TPC Template Fits	TPC d <i>E/</i> dx Template Fits		> 2.0		$ \eta < 0.8$

<p_>vs multiplicity

- The hardening of spectra can be quantified by looking at the $\langle p_T \rangle$ as a function of multiplicity
- Rising trend of $< p_{T} >$ with multiplicity for all identified particles
- Mass ordered
- Logarithmic fit to guide the eye

