Multiple Parton-Parton Interactions: from pp to A-A

Andreas Morsch CERN

QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016)

Multiple Parton-Parton Interactions

 $Q_i^2 \gg \Lambda_{QCD}^2$

"self normalised"

Theoretical basis to understand

- Global event properties of non-diffractive pp collisions
 - Multiplicity distribution
 - deviation from KNO scaling for $\sqrt{s} > 200 \text{ GeV}$
 - Underlying event of hard processes
 - Forward-Backward Correlation
 - Increase of mean p_{T} with multiplicity
- Implemented in many event generators (Pythia, Herwig, Sherpa ...)

• Straightforward interpretation of pQCD $\sigma_{2\rightarrow 2} > \sigma_{tot}$

Hard and Total Cross-Section

- Approach only very approximate for several theoretical reasons
- Also experimentally impossible to select event samples that are pure (unbiased) superpositions.

Damping of Hard Cross-Section at Low p_{T}

pQCD x-section diverge for $p_T \rightarrow 0 + \text{strong } \sqrt{\text{s-dependence}}$ ۲

Hard cross-section has to be damped below certain momentum scale (color screening, saturation)

$$\sigma(\hat{p}_T) \rightarrow \sigma(\hat{p}_T) \frac{\hat{p}_T^4}{\left(\hat{p}_{T0}^2 + \hat{p}_T^2\right)^2}; \ \hat{p}_{T0} \approx 1.5 - 2 \text{ GeV}$$

resolved

Jet Pedestal Effect

JHEP 2012, 7 (2012), 116

Effect described by impact parameter dependence hard and soft processes

$$d\sigma_{2\to 2} = db^2 T_p(b_{pp},..)$$

$$\rho(r,x) \propto \frac{1}{a^3(x)} \exp\left(-\frac{r^2}{a^2(x)}\right)$$

$$a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x}\right)$$

Ledge Effect

Ledge: rise – plateau – rise 1st rise: increased dominance of hard over soft interactions 2nd rise: jet fragmentation bias

Coherence Effects

 $|\eta|$ <0.3, 0.15< p_{τ} <10.0 GeV/c

Collective Hadronization

Model Constraints

Model Constraints

Pythia8

Better Tuning ?

Correlations between MPIs via PDF

Naive factorisation:

$$\frac{\mathrm{d}\sigma^{AA\to X}}{\mathrm{d}p_T} \propto \sum_{n=1}^{N_{\mathrm{MPI}}} f_i(x_i^n, Q_n^2) \circ f_j(x_j^n, Q_n^2) \circ \sigma^{ii\to k}(x_i^n, x_j^n, p_T / z, Q_n^2) \circ D_{k\to X}(z, Q_n^2)$$

More realistic:

$$\frac{\mathrm{d}\sigma^{AA\to X}}{\mathrm{d}p_T} \propto f_i(x_i^1, x_i^2, x_i^3, \dots; Q_1^2, Q_2^2, \dots) \circ f_j(x_j^1, x_j^2, x_j^3, \dots; Q_1^2, Q_2^2, \dots) \circ \sum_n^{N_{\mathrm{MPI}}} \sigma^{ii\to k}(x_i^n, x_j^n, p_T / z, Q_n^2) \circ D_{k\to X}(z, Q_n^2)$$

• Ex. Pythia: rescaling prescription:

$$0 < x < 1 \Longrightarrow 0 < x < 1 - \sum x_i$$

• HIJING: Limit on *N*_{MPI} to enforce energy conservation

Introduces correlation between hard and soft particle production at high rapidity / multiplicity (measurement ?)

Ledge Effect Revisited

12

Ledge Effect Re-visited

Multiplicity measured in:

- Spectra measured at mid-rapidity, hardness multiplicity dependent
- Reduced bias with "centrality estimator" from forward region
- Decomposition of effects in the intermediate p_T region less obvious

MPI at the Boundary Between Hard and Soft

- More direct way to study contribution of hard processes and fragmentation biases at low $p_{\rm T}$
- Study 2→2 scatterings with azimuthal di-hadron correlations
 - decomposition
 - trigger particles $p_T > p_{T,trig}$
 - correlated associated particles p_T> p_{T,assoc}
- At low p_T , but $p_T \gg \Lambda_{QCD}$

Yield per Trigger vs Multiplicity

- Number of associated particles increases with multiplicity
- Non-linearity between N_{MPI} and semi-hard particle production

Uncorrelated Seeds

2013 JHEP 1309 049

Fragmentation bias results in non-linear increase of number of trigger particles.

$$\frac{\left\langle N_{\rm trig} \right\rangle}{\left\langle N_{\rm trig} \right\rangle_{\rm MB}} > \frac{\left\langle N_{\rm ch} \right\rangle}{\left\langle N_{\rm ch} \right\rangle_{\rm MB}}$$

Reduced number of trigger particles

$$N_{\text{uncorrelated seeds}} = \frac{N_{\text{trig}}}{1 + N_{\text{assoc}}}$$
$$\frac{\langle N_{\text{tunc seeds}} \rangle}{\langle N_{\text{unc seeds}} \rangle_{\text{MR}}} \approx \frac{\langle N_{\text{ch}} \rangle}{\langle N_{\text{ch}} \rangle_{\text{MR}}}$$

Sensitivity to MPI Distribution

Multiplicity Evolution of Global Event Shape

In general, MC predict "jettier" events at high N_{ch}

Open Charm Yield vs Multiplicity

- Non-linear increase at high multiplicity.
- Or linear increase + threshold effect
- No p_T dependence (= no bias) ?

Charmonia

Similar behaviour for J/ψ at mid-rapidity Linear for forward J/ψ ?

Model Comparison

- So far only percolation model shows qualitative agreement.
- Should try other Pythia option, for example x-dependent proton geometry
 - Role of diffraction at low N_{ch}

No simple $N_{MPI}/\langle N_{MPI} \rangle_{MB}$ expected

Upsilon Production vs Multiplicity

Puzzling: Non linear-increase strongest for Y(1S)

Y(2S), Y(3S)-Suppression in pp ...

... or rather an Y(1S) enhancement Needs analysis of h-Y angular correlations

From pp to p-A

- Transverse size of interaction region similar to pp
 - increases initial energy density and overlap of strings
 - Increases coherence (collective) effects ?
- Number of parton-parton interactions $\sim N_{coll}$. n_{hard}
 - Expect stronger effects from energy conservation
- Interplay between multiplicity and MPI ?
 - Important for centrality selection (N_{coll} determination)
 - Extrapolate from knowledge on pp

Bias on initial state from centrality estimators

Slicing of Multiplicity in $2.8 < \eta < 5.1$

Multiplicity selects on N_{coll} and local p-N overlap and minijet fragmentation

Collisions Energy and System Size Dependence

- No significant p-N bias at 200 GeV (RHIC)
- Decreasing effect with increasing target size

Consequences for R_{pA}

Non-Trivial Glauber Extensions

HIJING Glauber

- Mean number of pQCD 2→2 scatterings (n_{hard}) depends on p-A overlap T_{pA}(b_{pN})
- Poissonian fluctuations of n_{hard}
- Glauber-Gribov Color Fluctuations
 - Size of proton changes event by event
 - Configuration frozen for a single p-A collision
 - Parameter Ω=width of Gaussian
 Fluctuations

Non-Trivial Glauber Extensions

- Glauber-Gribov Color Fluctuations
 - Changes *P*(*N*_{coll})
- HIJING Glauber
 - Does not change $P(N_{coll})$
 - Provides correlation between hard and soft particle production
 - Caveat: high values of hard suppresses by energy conservation

No pA generator implementing known basic effects exists !

Geometry bias, see also J.Jia arXiv:0907.4175

29

Centrality dependent dN/dŋ

Interpretation depends on parameter Ω

MPI at low- p_T from di-hadron correlations

Small bias for peripheral collisions Increased fraction of soft events?

Centrality Estimator Dependence

Phys. Lett. B 741 (2015) 38

Strong bias if multiplicity measured in central region.

Model Comparison

Centrality Dependence of Jet Production

Centrality classes from total transverse energy in -4.9 < η < -3.2

Correlation between Hard and Soft

$$0 < x < 1 \Longrightarrow 0 < x < 1 - \sum x_i$$

Can lead to large effects if one of the x is large, e.g. jets at large rapidity

- Simple model [N. Armesto et al. arXiv1502.02986]
 - Simulate hard scattering with Pythia
 - Subtract from each proton energy of parton participating in the hard scattering
 - Simulate underlying event from p-Pb collision with reduced energy (HIJING)

Model Comparison

Centrality classes from total transverse energy in $-4.9 < \eta < -3.2$

Jets at mid-rapidity in d-Au @ 200 GeV

- Jet production
 - enhancement in central collisions
 - suppression in peripheral collisions
- Red Flags for Centrality Bias
 - effects vanishes when averaged over centrality classes
 - peripheral collisions inconsistent with pp expectation.

From pp to AA

- Naively (factorisation) one expects the crosssection from semi-hard scatterings to increase $\sim A^2$
 - Would mean that these are the dominant source of particle production in central collisions
- The interaction area increases $\sim A^{2/3}$ and scattering density $\sim A^{4/3}$

$$\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} = \frac{1}{2} \langle N_{\mathrm{part}} \rangle \langle n_{\mathrm{soft}} \rangle + \langle N_{\mathrm{part}} \rangle \langle n_{\mathrm{soft}} \rangle \frac{\sigma_{\mathrm{jet}}(\sqrt{s})}{\sigma_{\mathrm{inel}}(\sqrt{s})}$$

Charged Particle Density in AA

- Naive 2-component model fails
- Factorisation breaks
- Several interactions per area of hard scattering

 $a_{\rm hard} \propto \frac{1}{p_{\rm T0}^2}$

Scattering are not independent anymore

New data from Run II

Trend established at lower \sqrt{s} confirmed Considerably steeper rise of AA multiplicity wrt pp.

arXiv:1512.06104

Centrality Dependence

- S-shape reflects hard+soft scaling (f N_{part} + (1-f) N_{coll})
- But shape almost energy independent.
 - Strong \sqrt{s} dependence of the hard component expected

Participant Quark Scaling

Constituent quarks are Gell-Mann's quarks from Phys. Lett. 8 (1964)214, proton=uud. These are relevant for static properties and soft physics, low Q²<2 GeV²; resolution> 0.14fm For hard-scattering, $p_T>2$ GeV/c, Q²=2 $p_T^2>8$ GeV², the partons (~massless current quarks, gluons and sea quarks) become visible

Slide from M. J. Tannenbaum

- Seems to imply that only quarks are involved contrary to what one expects from the increase of the gluon density at low x.
- Maybe better: Regions of size $1/p_0^2$ interact coherently
- Two limits:
 - $N_q = 1$: N_{part} scaling
 - $N_q = \infty$: N_{coll} scaling
- Constituent quark scaling naturally interpolates between the two.

Participant Quark Scaling ?

Works pretty well !

Other Aspects of MPI in AA

- Role of coherence effects in pp MPI for AA
 - How does coherence in individual collisions extend to the whole interaction area?

- Centrality in peripheral Pb-Pb Collisions
 - Event selection biases similar to p-Pb can be expected for centralities > 80%

Summary

- In pp, rich systematics from measurements of observables as a function of multiplicity from
 - Interplay between particle production from soft and multiple hard processes
 - coherent fragmentation / collective hadronisation
 - correlation via parton density function (momentum conservation)
 - biases on the mini-jet fragmentation

Summary

- In pA
 - fragmentation biases decrease
 - all other effects are expected to increase due to the multiple interactions of the proton (or overlap with more dense matter)
 - In particular fwd hard and bkwd soft correlations
- In AA
 - Role of coherence effects in smaller systems ?
 - initial state parton density
 - final state correlations