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Abstract: If taken into account, the transmission of the particle-scattering turbulence –in addition to just
the particles– through the shock front can change the effective compression ratio felt by the accelerating
particles significantly from the compression of the underlying plasma. This can lead to significantly
harder energy spectra than what are traditionally predicted assuming frozen-in turbulence. I consider
the applicability and limitations of turbulence transmission scenario in parallel shock waves of different
thickness, its consequences in AGN and microquasar environments, and discuss the possible effects to
the spectrum of the accelerated particles.

Introduction

The first-order Fermi acceleration process in shock
waves is often considered as the main mechanism
responsible for the nonthermal electron popula-
tions assumed to produce the observed radiation
in many astrophysical sources. In the basic theory
partices gain energy scattering elastically off mag-
netic turbulence –e.g., Alfvén waves– frozen-in to
the converging flow. The process is known to ac-
celerate charged particles to power-law energy dis-
tributionsN ∝ E−σ, with spectral indexσ having
value∼ 2 for nonrelativistic and∼ 2.2 for rela-
tivistic shocks, fitting many observations.

For the simplest nonrelativistic (unmodified) step
shocks the spectral index of the accelerated parti-
cles is known to depend mainly on the compres-
sion ratio of the plasma,r ≃ rflow = V1/V2 , as
σ = r+2

r−1
, whereV1 andV2 are the shock-frame

speeds of the far up- and downstream flows, re-
spectively. The compression ratio itself depends
on the hydrodynamics of the flow, and has values
ranging from4 (nonrelativistic) to3 (for V1 → c).
In modified thicker shocks the effect of broadened
speed profile leads to decreased acceleration effi-
ciency and steeper spectra. [1,2]

Although many observations are in accordance
with σ of 2 or 2.2, some sources seem to re-
quire significantly smaller indices beyond the lim-
its of the traditional first-order acceleration the-

ory. Although there are other plausible mecha-
nisms cabable of producingσ < 2, omitting the
assumption of frozen-in turbulence might be suffi-
cient even for the first-order process alone to allow
for hard spectra. Namely, by including the dynam-
ics of the particle-scattering waves –and the effects
the shock has on them– in the analysis, one arrives
to a situation where theeffectivecompression ratio
felt by the scattering centres can be significantly
higher than that of the underlying flow,rflow. [3–8]

In this paper I review recent studies done so far for
parallel shocks, discuss the physical requirements
for the scenario, and illustrate the effect method in
the case of the microquasar Cygnus X-3.

Wave transmission

In very thin astrophysical plasmas particle–particle
collisions are extremely rare and the particles only
“see” the magnetic turbulence. If this turbulence is
frozen-in to the plasma, then the scattering-centre
speed is simply that of the underlying plasma
flow. But, as has been known for long [9],
if the waves themselves have significant speeds
with respect to the flow, then also the scattering-
centre speed changes. For turbulence consisting
of Alfvén waves propagating in the plasma with
Alfvén speedV ′

A either parallel (“forward”) or an-
tiparallel (“backward”) to the direction of the flow
with respect to the shock, the wave speed in the
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shock rest frame is simply the flow speedV (x) in
the shock frame plus (or minus) the local Alfvén
speed in the plasma frame. When there are both
wavemodes present, it becomes useful to define the
normalised cross-helicityof the waves as

Hc =
I+ − I−

I+ + I−
∈ [−1, +1],

whereI± ≡ I±(x, k) ∝ k−q (for k > k0) are the
wave spectra of the forward (+) and the backward
(−) waves for a given wavenumber at a given loca-
tion. The “mean scattering-centre speed” is then

Vsc =
V + HcV

′
A

1 + HcV V ′
A

.

Furthermore, we introduce the the Lorentz fac-
tor Γ = 1/

√

1− V 2/c2 and thequasi-Newtonian
Alfvénic Mach number,

M ≡
V1Γ1

V ′
A1ΓA1

,

where the proper Alfvén speed

V ′

A1ΓA1 =
B√

4πµn
,

and the specific enthalpyµ = (ρ + P )/n depend
on the total energy densityρ, number densityn,
and the pressure,P , of the gas.

In a super-Alfvénic shock the speed of the flow
with respect to the shock is always larger than
the local wave speed. In other words, as seen in
the shock rest frame, both the forward and back-
ward moving waves propagate toward the shock in
the upstream and away from it in the downstream;
there are no waves crossing the shock from down-
stream to upstream. This allows us to define the
critical Mach numberMc ≡

√
r, above which the

aforementioned conditions are fulfilled. [4]

In order to calculate the scattering-centre speeds
on both sides of the shock one has to solve how the
shock crossing affects the wavelenghts and ampli-
tudes of the waves. So far this has been done sep-
arately for the step shock approximation (i.e., for
waves much longer than the shock structure) [3–5]
and for thick modified shocks (or for waves suffi-
ciently short, seeing the transition of flow parame-
tres as smooth). [6,7]

Wave field behind the shock

Details of the transmission process depend on the
wavelength of the crossing wave; if the waves are
long compared to the shock transition, the part of
the waves are simply transmitted through the shock
while part is reflected (i.e., “+” waves become “−”
waves and vice versa) and regardless of the up-
stream wave composition there will be both wave
modes present in the behind the shock. [3, 4] Dif-
ferent waves are also amplified differently leading
to situation where, regardless of the upstream wave
field, the waves immediately behind a step shock
are flowing predominantly antiparallel to the flow
and “following” the shock.

If the shock transition is wide enough to allow
for the waves to see it as a smooth change from
upstream to downstream plasma parametres, there
will in general be no wave reflection case (see,
however, e.g. [10]), and an all-forward upstream
will result into all-forward downstream and like-
wise for the backward waves (i.e.,Hc1 = ±1 ⇒
Hc2 ± 1). [6, 7] This leads to a qualitative differ-
ence compared to the step-shock case as now, de-
pending on the upstream wave field and the shock
speed, there are also cases where the downstream
cross-helicity (or the “average wave direction”) is
positive, i.e., most of the waves are propagating
forward (see Fig. 1 in [7]).

Increased compression ratio

From the wave and flow speeds and the cross-
helicity on both sides of the shock one can calcu-
late the compression ratio of the scattering centres,
rk ≡ Vk1/Vk2. This is the compression felt by the
particles crossing the shock, and it can differ sig-
nificantly from the compression ratio of the flowr.
For M → ∞ the effective wave speedVk → V
and we have usual the frozen-in turbulence, but as
M → Mc (or, asV ′

A becomes non-negligible with
respect toV ), the scattering-centre compression ra-
tio starts to differ from that of the flow.

Figures 1 and 2 showrk/r as a function of the
Alfvénic Mach number (normalised to the critical
valueMc) for different shock speeds; Fig. 1 cor-
responds to the case with Kolmogorov-type turbu-
lence pre-existing in the upstream (Hc1 = 0, q =
5/3), and Fig. 2 has all waves initially antiparal-

252



30TH INTERNATIONAL COSMIC RAY CONFERENCE

Figure 1: Scattering-centre compression ratiork as a
function of Alfvénic Mach numberM for various shock
speeds in the case of upstram turbulence corresponding
to Hc1 = 0 andq = 5/3. The thick black line separates
the step and thick shock cases.

lel to the flow, as if self-generated by high-energy
cosmic rays streaming ahead of the shock (Hc1 =
−1, q = 2). In Fig. 1 one can also see the case
for thick relativistic shocks (or very short waves),
where the effective compression ratio can also be
decreased. In most cases the compression ratio
is, however, increased for magnetic field strengths
sufficient to allow for non-negligible wave speeds.

Example: Cygnus X-3 flare

A recent study of a microquasar Cygnus X-3 flare
suggests the presence of electron population with
a high-energy power-law distribution with energy
spectral indexσ ≈ 1.77. [11] Let us apply the
wave transmission scenario to see what would be
required for the physical properties if such a spec-
trum would be produced by a simple strong step
shock moving with the deduced speedV1 = 0.63
c into a low-density plasma with pre-existing Kol-
mogorov type turbulence. In the following we set
c = 1, and follow the transmission analysis pre-
sented in detail in [4,5].

Inversing the equation forσ(r) to r(σ) we can see
that if theσ = 1.77 is assumed to be due to first-
order process, compression ratio ofrk ≈ 4.90
would be needed.1 Describing the plasma as a
dissipation-free ideal gas, the compression ratio

Figure 2:Same as Fig. 1 but forHc1 = −1 andq = 2.

of the flow itself is onlyrflow ≈ 3.78, so the
scattering-centre compression ratio would have to
berk/rflow ≈ 1.24 times that of the flow.

From Fig. 1 we can see that this kind of increased
compression in the case of a mildly relativistic step
shock could follow if the ratio of Alfvénic Mach
number to the critical Mach numberMc =

√
rflow

is M/Mc ≈ 2.74 ⇒ M ≈ 2.74
√

rflow ≈ 5.33.
Now, combining the equations for the Alfvénic
proper speed and the Mach number, we get the
magnetic field:B = Γ1V1

√
4πµn/M.

For a strong shock the pressure of the upstream gas
is negligible to its rest energy, so the specific en-
thalpy becomesµ = m, where the massm de-
pends on the composition of the plasma:m =
mp + me for hydrogen plasma, andm = 2me

for electron-positron pair plasma. As neither the
composition nor the number density is well known,
we usen = 1 cm−3. Substituting the values
in to the equation of the magnetic field, we get
BH ≈ 21 mG andBpair ≈ 0.69 mG. Both agree
well with the upper limitsB < 0.15 G deduced
from observations of [12], so with the aforemen-
tioned assumptions the increased compression ra-

1. Note that the equation for spectral index is not ac-
curate for other than the simplest nonrelativistic shocks
– for faster speeds it overestimates the required compres-
sion. This value is still illustrative as it sets even stricter
limits for the magnetic field. Furthermore, the nonrel-
ativistic formula for diffusive acceleration has been ob-
served to work rather well even in relativistic shocks if
increased compression is present. [6]
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Figure 3:Resulting particle spectral indexσ from par-
allel step shocks when the upstream turbulence (q =

5/3, Hc1 = 0) is transmitted through a step shock and
the resulting effective compression ratio is used for ac-
celeration. Solid lines are for a relativistic shock moving
with speedV1 = 0.995 c, dashed lines correspond to
V1 = 0.63 c (Cyg X-3); upstream number densities are
n = 1 cm

−3 and 100 cm
−3 (thin and thick lines, re-

spectively) The two vertical dotted lines mark the limit
for frozen-in turbulence.

tio due to turbulence transmission could play a role
in explaining the hard spectrum. It is interesting
to note that if the value100 cm−3 [12] is used for
the upstream number density, the fields become
BH ≈ 0.21 G andBpair ≈ 6.9 mG, rising theBH

beyond the upper limit. More detailed knowledge
of the plasma composition and the magnetic field
could yield a tool for testing this model for both
the improving and rebuttal purposes.

The relation between the spectral index and the
magnetic field is shown in Fig. 3 for the Cyg X-3
case and additionally for a fully relativistic shock
with Γ1 ≈ 10, and for densities1 and100 cm−3.

Conclusions

I have discussed particle acceleration by the first-
order Fermi acceleration mechanism leaving out
the simplifying assumption of frozen-in turbu-
lence. I have described the basic results of Alfvén
wave transmission analysis [3–8], and the require-
ments for it to have significant changes in the ac-
celerated particle spectrum, with emphasis on the
possibility of having a natural way for parallel
shocks to produce spectra steeper than the “uni-

versal” σ ≈ 2.2 value. I have also demonstrated
that the physical properties required can be close to
those observed, suggesting that this kind of mech-
anism could indeed be active in certain sources.

I also stress that the mechanisms discussed rely on
various assumptions. First of all, the current the-
ory only deals with parallel shocks. It also ne-
glects the particle–wave, wave–shock and wave–
wave interactions, and assumes the turbulence to
consist of small-amplitude Alfvén waves. Further-
more, the short and long wavelength waves (and
particle scattering off them) are treated separately,
although it is probable for any real astrophysical
shock to affect waves of all lengths. Finally, the
second-order Fermi acceleration, very likely to af-
fect the produced spectra, is not considered here,
as its connection to the transmission analysis has
been studied elsewhere. [13]
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