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Guy Paic and the ICN

1996-1998, new development plan of the ICN.

Creation of the Department:
High energy physics.

2001-2002, Guy agreed to come to Mexico at the ICN.

Cátedra Patrimonial de Excelencia Nivel II (CONACyT).

Purpose: Create a laboratory to support measurements and test of detectors
mainly related with the ALICE experiment.

April 2003 to March 2005

Got a position in June 2005.
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Achivements in the two years

The laboratory was equiped:
to develop and test detectors

Members 1 researcher, 2 posdocs, 3 PhD students, and 1 M. Sc. student

Construction of a electronic card to characterize the scintillators for the
ACORDE detector

Design of an emulator of signals to test the data acquisition system of
ALICE

Several simulations related with the V0 detector and the analysis of data of
ALICE.

Design of a very high momentum particle identification detector for ALICE
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Guy Paic and the ICN

Silver Juchiman Award
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Quantum phase transitions

Typically they are driven by purely quantum fluctuations

Characterized by the vanishing, in the thermodynamic limit, of the energy
gap

Sudden change, non analytical, in the ground state properties of a system

Classically they are determined by the stability properties of the potential
energy surface, the order is determined by the Ehrenfest classification

This can be extended to the quantum case: Expectation value of the
Hamiltonian with respect to a variational function
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Phase transitions

Family of potentials
V = V(x, c) ,

with x = (x1, · · · xn) and c = (c1, c2, · · · , ck).

Equilibrium and stability properties:

∂V

∂xj
= 0 ,

∂2V

∂xj ∂xk
> 0 .

State equation: x(p) = x(p)(c1, c2, · · · , ck)

A phase transition occurs when the point x(p)(c) cross the separatrix of the
physical system. The separatrix is the union of the bifurcation and Maxwell sets.

Guy Paic Fest (December 1, 2012) Quantum information approach Puebla, México



Separatrix

Ground state energy for a system of N particles

〈H〉 = E(xα, cj)→ E =
E(xα, cj)

N

with α = 1, · · ·n and j = 1, 2, · · · , k.

Bifurcation and Maxwell sets: ∂E
∂xk

= 0

Ei,j =
∂2E
∂xi ∂xj

˛̨̨
x(p)(c)

,

E(p) = E(p+1) ,

{
∂E(p)

∂cj
−
∂E(p+1)

∂cj

}
δcj = 0 .

Guy Paic Fest (December 1, 2012) Quantum information approach Puebla, México



Quantum phase transitions

A finite temperature, a quantum system is a mixture of pure states, where
each one occurs with probability

Pk = 1/Z exp (−βEk) ,

with β = 1
κBT

and the partition function Z =
∑
i exp (−βEi).

The expectation value of an operator is given in terms of the density
operator

〈Ô〉 =
∑
i

Pi〈ψi|Ô|ψi〉 = Tr(ρ Ô) .

At T = 0 only the ground state contributes

For T 6= 0, the quantum state is determined by the condition of minimum
free energy instead of minimum energy.

Guy Paic Fest (December 1, 2012) Quantum information approach Puebla, México



Energy and information

Since 1961, from the Landauer principle, is known the mantra: information is
physical

The reason the Maxwell demon cannot violate the second law: in order to observe

a molecule, it must first forget the results of previous observations. Forgetting

results, or discarding information, is thermodynamically costly (∆Se = kB ln 2)
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Hamiltonian Model

The Ising model for two spins 1/2 or qubits∗

H = σ
(1)
z σ

(2)
z + B0

“
σ

(1)
z + σ

(2)
z

”
,

where the coupling of the qubits has been taken to be the unity. The σ
(i)
z are

Pauli matrices and B0 is a magnetic field.

In terms of the total angular momentum, the Hamiltonian can be written

H = 2Ĵ2z − 1 + 2B0 Ĵz ,

where 2Jz = σ
(1)
z + σ

(2)
z .

∗ J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Latt. 100, 100501 (2008)
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Solution

Energies and eigenstates

E = { −1, −1, 1 − 2B0, 1 + 2B0} ,

|σ1, σ2〉 = {|+,−〉, |−,+〉, |−,−〉, |+,+〉} .

Semiclassical solution
H = cos2 θ − 2B0 cosθ ,

where the variational state is given by

|j = 1, θ〉 =
1 − cosθ

2
|1, 1〉 +

s
1 − cos2 θ

2
|1, 0〉 +

1 + cosθ

2
|1,−1〉 .

Critical points θc : {0, π, arccosB0}.

Energies and eigenstates

E = {1 − 2B0, 1 + 2B0, −B20, −1} ,

|θc〉 = {|1,−1〉, |1, 1〉, |1, 0〉, |0, 0〉} .
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Energies and fidelity
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Fidelity

For two pure states, ρ1 = |χ〉〈χ| and ρ2 = |φ〉〈φ|, the fidelity is defined by

F(|χ〉〈χ|, |φ〉〈φ|) = |〈χ|φ〉|2 ,

the transition probability from one state to another. Its geometric interpretation
is the closeness of states.

For one mixed state ρ2, one has

F(|χ〉〈χ|, ρ2) = 〈χ|ρ2|χ〉 ,

that denotes the probability to be a pure state.

For mixed states the fidelity should satisfy the properties:

0 ≤ F(ρ1, ρ2) ≤ 1 (1)

F(ρ1, ρ2) = F(ρ2, ρ1) (2)

F(Uρ1, Uρ2) = F(ρ1, ρ2) (3)
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Fidelity

Uhlmann-Jozsa proved that

F(ρ1, ρ2) =
{
Tr
“q√

ρ1 ρ2
√
ρ1

”}2
,

satisfies the previous properties. Another definition satisfying the same properties
was given by Mendonca et al, i.e.,

F(ρ1, ρ2) = Tr(ρ1 ρ2) +
q
1 − Tr(ρ21)

q
1 − Tr(ρ22) .

The fidelity has a fundamental role in communication theory because measures

the accuracy of a transmission.
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Fidelity and Fidelity Susceptibility

The fidelity ( P. Zanardi and N. Paunkovic, Phys. Rev. E 74 (2006)) can be used
to determine when the ground state of a quantum system presents a sudden change
as function of a control parameter. If we denote that parameter by λ one has

F(λ, λ + δλ) = |〈ψ(λ)|ψ(λ + δλ)〉|2 .

Taylor series expansion of the fidelity

F(λc, λc + δλ) = F(λc, λc) + δλ
dF

dλ

˛̨̨̨
˛
λ=λc

+ (δλ)2
1

2!

d2F

dλ2

˛̨̨̨
˛
λ=λc

+ · · · ,

the first derivative is zero because the fidelity is a minimum and the fidelity
susceptibility is defined by (W. You et al Phys. Rev. E 76 (2007))

χF = 2
1 − F(λc, λc + δλ)

(δλ)2
.

It is dependent of the Hamiltonian term that causes the phase transition.
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Entanglement

Suppose Alice and Bob are trying to create n copies of a particular bipartite state
|Φ〉, such that Alice hold the part A and Bob the part B. They are not allowed
any quantum communication between them. However they have a large collection
of shared singlet pairs |Ψ−〉.
How many singlet pairs must they use up in order to create n copies of |Φ〉?
The answer is they need to create roughly nSvN(Φ), the von Neumann entropy.

Examples, the so called Bell states

|Φ±〉 = 1√
2

(
|+,+〉 ± |−,−〉

)
,

|Ψ±〉 = 1√
2

(
|+,−〉 ± |−,+〉

)
.

which have maximum linear and von Neumann entropies.
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Linear and VN Entropies

(a) The linear entropy is defined by SL = 1 − Tr(ρ22)

ρ = 1
2

“
|+,+〉〈+,+| + |+,+〉〈−,−| + |−,−〉〈+,+| + |−,−〉〈−,−|

”
,

Tracing over the first subsystem one gets

ρ2 = 1
2

“
|+〉〈+| + |−〉〈−|

”
,

which implies that SL = 1/4.
(b) The von Neumann entropy

SvN = −
∑
k

λk ln λk

where λk denote the eigenvalues of the reduced density matrix of the

subsystem 2. For the Bell state, it is immediate that SvN = ln 2 = 0.693.
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Purity and von Neumann Entropy
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In blue color, the von Neuman entropy and in cyan color the purity. Both as functions of the
magnetic field B0.

ρL = |+,+〉〈+,+| , ρM = 1
2

(|+,−〉〈−,+| + |−,+〉〈+,−|) , ρR = |−,−〉〈−,−| .

The linear entropy is defined by P = 1− Tr(ρ2
2) where ρ2 = Tr1(ρA) with A = L,M, y R.

The von Neumann entropy

SvN = −
∑

k

λk lnλk

where λk denote the eigenvalues of the reduced density matrix ρ2.
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Hamiltonian Models

H = â†â +ωAĴz +
γ
√
N

“
â† + â

” `
Ĵ+ + Ĵ−

´
.

This can describe: (i) the interaction between many atoms and a single mode
e.m. field of a cavity and (2) the interaction of many qubits with a single
harmonic oscillator.

H = Ĵz +
γx

2j − 1
Ĵ2x +

γy

2j − 1
Ĵ2y .

This Hamiltonian has been used to test many body approximations (LMG) or as

a model of a two-mode Bose-Einstein condensate.
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Scaling behavior of the fidelity susceptibility

Next, we consider γy = −1.0.
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χmax = 2−0.16N2 , γx c − γxm = 20.46N−1 , for the even case

χmax = 2−2.95N2 , γx c − γxm = 21.71N−1 , for the odd case

where the thermodynamic value γx c = −1.
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Scaling behavior of the fidelity susceptibility

Now, we consider γy = −0.5. and the same set of number of particles mentioned
before.
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χmax = 2−0.85N1.35 , γx c − γxm = 20.87N−0.65 , for the even case

χmax = 2−2.04N1.36 , γx c − γxm = 21.26N−0.65 , for the odd case

where γx c = −1.
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Separatrix of the LMG model

There are three regions Phys. Rev B 72 (2005); Phys. Rev B 74(2006). Phase transitions occur

when one crosses these regions, we could establish the order of the phase transitions. For

γx c = −0.1; one finds that χmax ≈ N2 and (γx c − γmax) ≈ N−1. For other crossings of

second order phase transitions one gets χmax ≈ N4/3 and (γx c − γmax) ≈ N−2/3. The

point (−1,−1) is special because it has a third order phase transition ( γy = −γx − 2).
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Linear and VN entropies for the Dicke Model
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At the left, the maximum values are

(N,γ) = {(20, 0.572), (40, 0.543), (100, 0.523), (200, 0.514), (400, 0.509), (1000, 0.505)} ,

while at the right one has

(N,γ) = {(20, 0.571), (40, 0.544), (100, 0.524), (200, 0.515), (400, 0.509), (1000, 0.505)} .

By means of the fidelity one gets

(N,γ) = {(20, 0.568), (40, 0.543), (100, 0.524), (200, 0.515), (400, 0.509), (1000, 0.505)} .
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Scaling behavior
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We show for the Dicke model that the coupling parameter and the maximum
fidelity susceptibility also satisfy

(γmax − γc) ≈ N− 2
3 , χmax ≈ N

4
3 .
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Conclusions

Determine quantum phase crossovers, which goes to the thermodynamical
limit when N→∞.

The fidelity, fidelity susceptibility, and the linear or Von Neumann entropies
give information about the quantum phase transitions for a finite number of
particles, together with their scaling behavior.

A special crossing of the triple point of the LMG model has the behavior
χmax ≈ N2 , (γx c − γmax) ≈ N−1 .

Other crossings of second order phase transitions yield
χmax ≈ N4/3 , (γx c − γmax) ≈ N−2/3 . A similar behavior for the
second order quantum phase transition of the Dicke model was obtained.
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