HE2: Muons and Neutrinos

2.1 Muon observations	17	
2.2 Solar & atmospheric neutrinos	16	
2.3 Astrophysical neutrinos	37	
2.4 Calculations		19
2.5 New experiments, instrumentation	18	

Searching for possible hidden chambers in the **Pyramid of the Sun**

Muon tomography

ICRC-2007, Mérida

Searching for possible hidden chambers in the Pyramid of the Sun

ICRC-2007, Mérida

Muons, the gold standard of cosmic-ray physics

- Muon tomography works because the spectrum of muons is very well-measured up to several hundred GeV
- Genetic relation to neutrinos constrains neutrino flux:

$$- \pi^+ \rightarrow \mu^+ + \nu_{\mu}; \ \mu^+ \rightarrow e^+ + \nu_e + \nu_{\mu},$$

- K⁺
$$\rightarrow$$
 μ^+ + ν_{μ} ; etc.

- Major uncertainties in μ and ν fluxes:
 - E > TeV: K component
 - E > 100 TeV: charm component
 - Overall normalization

Merida, July 11, 2007

Tom Gaisser

μ^+/μ^- with MINOS

MINOS far detector

- 10 < E $_{\mu}$ < 250 GeV at 2 < X cos θ < 4 km w. e.

– Equivalent to $1 < E_{\mu} < 7$ TeV at surface

- First high-statistics measurement of muon charge ratio in TeV energy range
- Realize goal of Zatsepin & Kuz'min (1960)*
 - "…in the energy range of 10¹¹ 5x10¹² eV the μ-meson angular distributions depend significantly on their production mechanism" (*JETP 39, 1677-1685, 1960)

Charge Ratio Model Results

• MINOS measure μ + / μ ⁻ and fit to formulas

• best fit values: $f_{\pi^+} = A_{\pi^+} / A_{\pi^-} = 0.55$; $f_{K^+} = A_{K^+} / A_{K^-} = 0.67$ Merida, July 11, 2007 Tom Gaisser

π / K ratio

• Critical energy for interaction vs decay:

Tom Gaisser

6

Merida, July 11, 2007

Implications for > TeV atmospheric v

•
$$f_{K^+} = 0.67 \rightarrow A_{N \rightarrow K^+} / A_{N \rightarrow K^-} = 2$$

- Substantial contribution of associated production ($\rm p \rightarrow \Lambda \ K^+$)
- Effect is amplified for v's: $v_{\mu} / \overline{v}_{\mu} \rightarrow 2$
- Important for atmospheric neutrino background in neutrino telescopes
- MINOS measurement will lead to improved calculation of >TeV $\phi_{\rm v}$

Super-Kamiokande and status of neutrino oscillations

- SK-III operating since July 12, 2006
- Hardware and software upgrades
- Full complement of >11 thousand 20" PMTs plus outer (veto) detector
- Recalibration finished and first year data in good agreement with SK-I + SK-II
- Potential for lower threshold for solar neutrino analysis

SK-I, SK-II combined analysis

Yumiko Takenaga

100

SK-I : 1489 days Zenith Angle Distributions (SK-I + SK-II) SK-II: 804 days SK-I + SK-II 10 -2 $v_{\mu} - v_{\tau}$ oscillation (best fit) Best Fit: $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ SK-I + SK-II null oscillation $sin^{2}2\theta = 1.00$ do-Calif p-Res 300 mill-ing a-lia -ring -- Ma 200 100 χ² = 839.7 / 755 dof (18%) 400 P<400MeV/c P<400 MeV/c 160 500 200 200 کس² (ولائ 100 200 200 H 100 60 100 100 0.5 -0.8 0 n 0.6 0.5 -0.5 0.5 99% C.L ub-GeV e-Ba P>400MeV/c 300 0% C.L P>400MeV/c 400 68% C.L μ-like 201 100 10 e-like 0.7 0.6 8.0 ein²28 0 8.6 0.0 as ik di Jawa a Ka - Literated Upment through والبرج الأواكيك 160 († 11 200 180 160

200

-

ю

٥

con f

SK extension to low energy

- Reconstruction algorithms were refined during SK-II to overcome loss of PMTs
- Potential to extend threshold to ~3 MeV
- Solar neutrinos in transition region
- Reactor anti-neutrinos
 - Detection of low-energy v
 _e + p → n + e⁺ requires addition of Gd to detect recoil n
 - Bonus: this will allow improved search for relic supernova $\overline{\mathbf{v}_{e}}$

Courtesy K. Bays, UC Irvine & M. Nakahata, ICRR

Neutrino oscillation status

- L/E dip seen at first oscillation minimum
- No evidence yet for any non-standard oscillations, only upper limits for
 - sterile neutrinos
 - oscillations increasing with energy
- No sign yet of possible second-order oscillation effects
 - three-neutrino effects
 - θ_{13}
- MINOS in NuMi beam results consistent with SK

Predicting Unoscillated FD Spectrum

MINOS in NuMi neutrino beam, Alexandre Sousa

Start with Near Detector data and perform extrapolation to the Far Detector

- Use knowledge of pion decay kinematics and beamline geometry to construct a beam transport matrix and predict FD spectrum from measured ND spectrum
- The "Beam Matrix" method is the primary method used in the MINOS CC analysis

Atmospheric neutrinos in MINOS

- First detector with ability to determine sign of atmospheric neutrinos
- Too small to obtain good statistics
- Note reversal of muon charge ratio:
 - muon neutrino / muon anti-neutrino > 1
 - therefore μ^- / μ + > 1

$p_{fit} (\text{GeV})$	Data	Bkgd	MC		
	μ^-				
1 - 10 (L)	21	2.2	37.5		
10 - 100 (H)	20	0.2	17.5		
	μ^+				
1 - 10 (L)	16	1.3	19.3		
10 - 100 (H)	13	0.2	8.6		
	U				
unknown (U)	70	0.7	76.5		

Merida, July 11, 2007

Atmospheric vs astrophysical $\boldsymbol{\nu}$

- Atmospheric
 - $\nu_{\mu} : \nu_{e} : \nu_{\tau} \sim 2:1:0$
 - Steady flux
 - $sec(\theta)$ distribution
 - Steep spectrum
 - v_e very steep
 - "prompt" neutrinos
 - $v_{\mu} : v_{e} = 1:1$
 - normalization uncertain
 - harder spectrum

- Astrophysical
 - $v_{\mu} : v_{e} : v_{\tau} \sim 1:1:1$
 - Flux may be variable
 - Point sources expected
 - Harder spectrum
 - All flavors similar spectra
 - Charm decay is important background for search for astrophysical neutrinos

Supernova Relic Neutrino (SRN)

Supernova Relic Neutrino(SRN) is diffuse supernova neutrino background from all past supernova.

O Motivation

SRN Measurement will enable us to investigate the history of past Supernova. For example, the flux of SRN would show the star formation rate and supernova rate in galaxies.

O Interaction in SK

The main interaction for SRN search in the SK detector is charged current quasielastic interaction (inverse β decay).

$$\overline{v}_e$$
+p \rightarrow e⁺ +n

© Energy region for SRN search

SRN is dominant neutrino in 18 - 40 MeV

Merida, July 11, 2007

Tom Gaisser

Diffuse, relic supernova neutrinos

- Super-K limit is from $\overline{v}_e + p \rightarrow n + e^+$
- Neutron not detected in current Super-K
- Backgrounds:
 - atmospheric ν_e and $\overline{\nu_e}$
 - solar ν_e and reactor $\overline{\nu}_e$

 $(E_{u} < 50 \text{ MeV})$

Stopped µ below threshold

- atmospheric $v_{\mu} \rightarrow \mu$

Improvement with tagged neutron

Beacom & Vagins, PRL 93 (2004) 171101

Prescribe gadolinium additive to detect neutrons and eliminate background and select anti-v_e only

Improvement with tagged neutron

SK flux limit VS predicted flux

Prescribe gadolinium additive to detect neutrons and eliminate background and select anti- v_e only

Current limits close to expectation!

Merida, July 11, 2007

Tom Gaisser

Time Information: Sliding Window Search

Time Information: Sliding Window Search

S-K Summary (SN burst search)

- Using data from Super-K,
 3 methods of supernova searches with newly installed criteria was conducted.
- Data set : from May 1996 to Oct 2005

Total livetime: 2589.3 days

(Livetime for 3rd analysis : 2381.3 days)

- No candidate was observed
- 100% detection probability up to 100 kpc
- SN rate within 100kpc(LMC,SMC,our Galaxy) is estimated

< 0.32 SN/yr @ 90% C.L.

- Detection probability is maintained at a level of 7% for SN at Andromeda.
- No candidate of neutronization burst observed

RUN	Since:	То:	Uptime [days]	Duty Cycle	Mass [tonn]	PUBLISHED
RUN 1	Jun 6 th '92	May 31 st '93	285	60%	310	23 rd ICRC 1993
RUN 2	Aug 4 th '93	Mar 11 th '95	397	74%	390	24 th ICRC 1995
RUN 3	Mar 11 th '95	Apr 30 th '97	627	90%	400	25 th ICRC 1997
RUN 4	Apr 30 th '97	Mar 15 th '99	685	94%	415	26 th ICRC 1999
RUN 5	Mar 16 th '99	Dec 11 th '00	592	95%	580	27 th ICRC 2001
RUN 6	Dec 12 th '00	Mar 24 th '03	821	98%	842	28 th ICRC 2003
RUN 7	Mar 25 th '03	Feb 4 th '05	666	>99%	881	29 th ICRC 2005
RUN 8	Feb 5 th '05	May 31 st '07	846	>99%	936	30 th ICRC 2007

Total 4919 days Upper Limit to SN event in the Milky Way 0.17 /year (90% c.l.)

30th International Cosmic Ray Conference Merida, Mexico

C.Vigorito, University & INFN Torino, Italy

Detectors sensitive to high-energy neutrinos

- Neutrino telescopes
 - Primarily aimed at >TeV, upward v_{μ} -induced v
 - e.g. IceCube/AMANDA, Baikal, Antares, Nestor, KM3net
 - Also sensitive to PeV, EeV $\nu,$ but limited area
- Radio, acoustic detection
 Threshold in EeV range
- Giant EAS detectors sensitive to ~EeV ν
 - e.g. Auger, HiRes, CRTNT

IceCube

2450m

1450m

26

strings and tank stations

Completion by 2011.

Atmospheric neutrinos in IceCube

2006 Atmospheric v_{μ} search

- 137.4 Live Days
- Reconstructed with AMANDAbased likelihood reconstruction
- Reject down-going events
- Up-going events dominated by mis-reconstructed down-going events.
 - Quality cuts on number and length of Direct (unscattered) hits
 - N_{dr}>= 10 L_{dr}> 250 meters for the final sample
- 211 ±76.1(syst) ± 14.5(stat) events expected from atmospheric neutrinos
- 234 events measured

Paolo Desiati, John Pretz

IC-9 Final Event Selection

- Excess at the horizon is expected to be residual background.
 - Good agreement above 120 degrees
- Peaks in azimuth correspond to long horizontal axes of the detector

Goals for neutrino astronomy

- Point source searches
 - Unbinned search improves sensitivity (Braun, Aguilar)
 - Search for clusters in time and space (E. Bernardini, R. Porrata)
 - Search for neutrinos from identified GRB (I. Taboada)
 - Multi-messenger "Target of Opportunity" in coincidence with gamma-ray telescope
- see Gavin Rowell's rapporteur talk for details of the ν/γ connection
- Atmospheric v and search for diffuse astrophysical v covered here

Neutrino effective area for ANTARES

Neutrino effective area for ANTARES

Neutrino effective area for ANTARES

Point source search with IceCube-9

Median 90% confidence level flux upper limit Φ^0 (as a function of declination) for point sources with differential flux: $d\Phi/dE = \Phi^0 (E / \text{TeV})^{-2}$.

Tom Gaisser

Expected v flux from galactic point sources, example: RXJ 1713-3946

Christian Stegmann et al.

Note importance of background of atmospheric v in a km³ detector

Neutrino Event Rates (II)

• γ-ray sources with observed cut-off (KM3NeT, 5 years)

		E > 1TeV		E > 5TeV	
Туре	Dia. [º]	src	bck	src	bck
PWN	0.8	9 – 23	23	5 – 15	4.6
SNR	1.3	7 – 14	21	2.6 – 6.7	8.2
SNR	2.0	7 – 15	104	1.9 – 6.5	21
PWN	0.3	5 – 10	9.3	2.2 – 5.2	1.8
PWN	< 0.1	4.0 – 7.6	5.2	1.1 – 2.7	1.1
NCP	0.3	0.8 – 2.3	11	0.1 – 0.5	2.1
Binary	<0.1	0.3 – 0.7	2.5	0.1 - 0.3	0.5
	Type PWN SNR SNR PWN PWN NCP Binary	Type Dia. [°] PWN 0.8 SNR 1.3 SNR 2.0 PWN 0.3 PWN <0.1	E > 1TeVTypeDia. [°]srcPWN 0.8 $9 - 23$ SNR 1.3 $7 - 14$ SNR 2.0 $7 - 15$ PWN 0.3 $5 - 10$ PWN <0.1 $4.0 - 7.6$ NCP 0.3 $0.8 - 2.3$ Binary <0.1 $0.3 - 0.7$	E > 1TeVTypeDia. [°]srcbckPWN 0.8 $9-23$ 23 SNR 1.3 $7-14$ 21 SNR 2.0 $7-15$ 104 PWN 0.3 $5-10$ 9.3 PWN <0.1 $4.0-7.6$ 5.2 NCP 0.3 $0.8-2.3$ 11 Binary <0.1 $0.3-0.7$ 2.5	E > 1TeV $E > 5TeV$ TypeDia. [°]srcbcksrcPWN0.89 - 23235 - 15SNR1.37 - 14212.6 - 6.7SNR2.07 - 151041.9 - 6.5PWN0.35 - 109.32.2 - 5.2PWN<0.1

NCP: no counterparts at other wavelength

* no γ-ray absorption

- 23 further γ-ray sources investigated:
 - All γ -ray spectra show no cut-offs (but limited statistics)
 - Event numbers mostly below 1 2 in 5 years

Christian Stegmann, Galactic Neutrinos, ICRC 2007

Merida,

Note importance of background of atmospheric v in a km³ detector

Neutrino Event Rates (II)

γ-ray sources with observed cut-off (KM3NeT, 5 years)

			E > 1TeV		E > 5TeV	
	Туре	Dia. [º]	src	bck 🖊	src	bck
- Vela X	PWN	0.8	9 – 23	23	5 – 15	4.6
- RX J1713.7-3946	SNR	1.3	7 – 14	21	2.6 – 6.7	8.2
- RX J0852.0-4622	SNR	2.0	7 – 15	104	1.9 – 6.5	21
- HESS J1825–137	PWN	0.3	5 – 10	9. <mark>3</mark>	2.2 – 5.2	1.8
- Crab Nebula	PWN	<0.1	4.0 – 7.6	5. <mark>2</mark>	1.1 – 2.7	1.1
- HESS J1303-631	NCP	0.3	0.8 – 2.3	11	0.1 – 0.5	2.1
- LS 5039* (INFC)	Binary	<0.1	0.3 – 0.7	2.5	0.1 – 0.3	0.5

NCP: no counterparts at other wavelength

* $n \gamma$ -ray absorption

- 23 further γ-ray sources investigated:
 - All γ -ray spectra show no cut-offs (but limited statistics)
 - Event numbers mostly below 1 2 in 5 years

Christian Stegmann, Galactic Neutrinos, ICRC 2007

Merida,

Search for diffuse v with hard spectrum

AMANDA-II 2000-2003 integrated analysis Gary Hill et al. Upper Limit

AMANDA 4 yrs atmospheric v

[1] Achterberg et al., astro-ph/0705.1315

Kirsten Münich

30th ICRC, Mexico July 2007

AMANDA cascade searches (>PeV)

Similar cascade search with different energy-dependent variable in paper by Oxana Tarasova for AMANDA

Merida, July 11, 2007

Tom Gaisser

Atmospheric Muon-Neutrinos

- Data: <u>372 upward v events</u> (1998-2002).
- MC: 385 ev. expected (15%BG).
 - \rightarrow A high statistics neutrino sample for

Point-Source Search, incl. GalCenter. No evidence for non-atmosph. v's.

(N_u(>15GeV)/N_u(>1GeV)~1/7)

ANTARES: Conclusions and Outlook

Antoine Kouchner

- Major step forward during the last year
- > Detector working well within design specifications:
 - Junction Box in operation since Dec. 2002
 - 5 lines delivering data on the site
 - All technical problems solved
 - 12 lines detector complete early 2008: Operation for science \ge 5 years
- > Milestone towards a KM³ underwater detector

ANTARES: Conclusions and Outlook

Antoine Kouchner

- Major step forward during the last year
- > Detector working well within design specifications:
 - Junction Box in operation since Dec. 2002
 - 5 lines delivering data on the site
 - All technical problems solved
 - 12 lines detector complete early 2008: Operation for science \ge 5 years
- Milestone towards a KM³ underwater detector

Candidates for

first undersea neutrino !!

Zenith angle distribution

Zenith angle distribution

5 line detector displays

NEMO km³ Conceptual Design

Toward the v-Telescope

EU funded the joint activity for a European-scale Design Study for a km³ v-telescope in the Mediterranean Sea

KM3NeT: ANTARES-NEMO-NESTOR consortium

http://www.km3net.org/

The experience gained will contribute to the advancement of the KM3NeT activities

Quest for cosmogenic $\boldsymbol{\nu}$

- Motivated by indication of GZK feature in UHE cosmic-ray spectrum
- Cosmogenic v (from p + $\gamma_{2.7}$ > n + π^+ > v)
 - Probe evolution, composition, spectra of extragalactic cosmic-ray sources
 - Goal: >1000 km³sr, > 100 events/yr, E >10¹⁸ eV
 - RICE, AURA, ANITA, ARIANNA at this conference
 - Acoustic detection in Ice another possibility

Model dependence of cosmogenic v

>PeV v absorbed in the Earth

Neutrinos: important bi-product in Auger

Neutrinos: important bi-product in Auger

A neutrino can induce a young horizontal shower !

EeV v_{τ} detection with Auger et al.

 $\Gamma c\tau \sim 100$ km for $E_{_{\! T}} \sim 2 \; x \; 10^{18} \; eV$ followed by $\tau\text{-decay}$ shower T. Weiler, D. Fargion Tom Gaisser

Merida, July 11, 2007

Current upper limit from Auger

Oscar Blanch-Bigas

Current upper limit from Auger

Oscar Blanch-Bigas

Km³ telescopes can also do v_{τ}

The radio technique

J. Alvarez-Muñiz et al. ICRC 2007, Mérida (México)

First Flight Overview and Detector Performance

Kimberly J. Palladino

for the ANITA Collaboration

1

First Flight Overview and Detector Performance

Detector was tested in pulsed electron beam at SLAC – Jeff Kowalski

for the ANITA Collaboration

The ANITA Concept

Ice in ANITA's Horizon

ANITA from the Pole

photo by James Roth

Ice in ANITA's field of view: volume by time in view

Proposed detectors

Tom Gaisser

SPATS Geometry

Calibrate radio technique with Askaryan pulses from air

Askaryan pulses from air shower cores, Merida, 30th ICRC, July 10 2007 (Seckel)

Calibrate radio technique with Askaryan pulses from air

Askaryan pulses from air shower cores, Merida, 30th ICRC, July 10 2007 (Seckel)

Sensitivity and limits

Comparison with experiments

Merida, July 11, 2007

Tom Gaisser

Concluding comments

- TeV muon charge ratio
 - important new result from MINOS
 - Implications for >TeV atmospheric neutrinos
- SK-III fully operational for one-year
 - Expect lower threshold, doping with Gd
 - Expect to find Supernova relic neutrinos
- IceCube running with 22 strings, completion by 2011
- Antares progressing well; Km3net plan km-scale neutrino telescope in the Mediterranean
- Intense interest in detecting GZK neutrinos
 - Goal should be 1000 km³ for 100 GZK ν per year
 - Need to calibrate the technique—use EAS cores?

Late news

July 10, 2007

The National Science Foundation (NSF) today announced selection of a University of California-Berkeley proposal to produce a technical design for a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake gold mine near Lead, S.D. The Homestake team, headed by Kevin Lesko, could receive up to \$5 million per year for up to three years.

http://www.nsf.gov/news/news_summ.jsp?cntn_id=109694&org=NSF&from=news

Extras

Calculations of anti- v_e background 10-100 MeV

Note dependence on phase of solar cycle:

 10 – 20% variation a signature of background, not of signal

• similar to response of neutron monitors

FLUKA 10-100 MeV

Battistoni et al.(2004): http://www.mi.infn.it/~battist/neutrino.html

All flavor limits by AMANDA

Merida, Ju