Proton-Air inelastic cross section measurement with ARGO-YBJ

Ivan De Mitri

University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy

On behalf of the ARGO-YBJ Collaboration

XXX International cosmic Ray Conference, ICRC 2007 Merida, Mexico, July 3-11, 2007

The ARGO-YBJ experiment

High Altitude Cosmic Ray Laboratory @ YangBaJing, Tibet, China Site Altitude: 4,300 m a.s.l., ~ 600 g/cm²

ARGO-YBJ physics goals

Cosmic ray physics:

anti-p / p ratio at TeV energy, spectrum and composition (E_{th} few TeV), study of the shower space-time structure, p-Air cross section,

See other ARGO-YBJ

218

~ ~ ~

	conference	219 447			
> VHE v-Ray Astronomy:					
search for point-like (and diffuse) galactic and extra-galactic sources at few hundreds GeV energy threshold					
			Search for GRB's (full GeV / TeV energy range)		900
Sun and Heliosphere physics (E _{th} ~ few GeV)		910			
through		950			
unougn					
Observation of <i>Extensive Air Showers</i> produced in the atmosphere by primary γ 's and nuclei					

EAS reconstruction

Event Rate ~ 4 kHz for N_{hit} >20

High space/time granularity + Full coverage + High altitude detailed study on the EAS space/time structure with unique capabilities

3-D view of a detected shower

Top view of the same shower

The position of the shower maximum (and its rms)

I.De Mitri et al. : Inelastic p-air cross section measurement with ARGO-YBJ

Measurement of the Flux attenuation

Use the shower frequency vs (sec θ -1)

$$I(\theta) = I(0) \cdot e^{-\frac{h_o}{\Lambda}(\sec(\theta) - 1)}$$

for fixed energy and shower age.

However $\Lambda = \mathbf{k} \lambda_{int}$ mainly because of shower fluctuations.

It is determined by simulations and depends on:

- Interaction model
- actual set of experimental observables
- energy

•

Then:

$$\sigma_{p-Air}$$
 (mb) = 2.4 10⁴ / λ_{int} (g/cm²)

Warning

Take care of shower fluctuations

• **Constrain**
$$X_{DO} = X_{det} - X_0$$
 or

better $X_{DM} = X_{det} - X_{max}$

• Select deep showers (large X_{max},

i.e. small X_{D0} or X_{DM})

• **Exploit** detector features (space-time pattern) and location (depth).

Data selection

> Event selection based on:

(a) "shower size" on detector, N_{bit} (pad multiplicity)

(b) core reconstructed in a fiducial area ($60 \times 60 \text{ m}^2$)

(c) constraints on Strip density (> $0.2/m^2$ within R_{70})

and shower extension ($R_{70} < 25m$)

N_{bit} is used to get two separated E sub-samples

I.De Mitri e

 $(N_{hit} = 300 \div 1000, N_{hit} > 1000)$

Cuts in-dependence on the zenith angle

No significant zenith angle dependence below 30 degrees.

A slight shift might be seen above 40 degrees.

In this analysis we stop at 40 degrees

The sec(θ) distributions

Exponential dependence in both MC and real data.

Larger contamination of "external" showers in the low energy bin

The contribution of He primaries
has been checked to increase
the cross section values by 7-9%
(depending on the assumed
primary spectra).

Correction for heavier primaries are expected to be negligible.

Nhit	<e></e>	k	σ _{CR-Air} (mb)
300 ÷ 1000	3.9 ± 0.1 TeV	1.6 ± 0.3	299 ± 55
> 1000	12.7 ± 0.4 TeV	1.2 ± 0.1	306 ± 34

Mérida, México

In this plot ARGO-YBJ data points have been already corrected for the effect of primaries heavier than protons.

In agreement with a previuos work based on 42 clusters data (ECRS, Lisbon 2006)

Nhit	<e></e>	k	σ _{CR-Air} (mb)	σ _{p-Air} (mb)
300 ÷ 1000	3.9 ± 0.1 TeV	1.6 ± 0.3	299 ± 55	275 ± 51
> 1000	12.7 ± 0.4 TeV	1.2 ± 0.1	306 ± 34	282 ± 31

- Glauber Matthiae theory
- Durand Pi
- Wibig Sobczynska

Models agree within few % in our energy range 💙

Summary and Outlook

- The flux attenuation technique has been shown to give reliable results, by exploiting the ARGO-YBJ detector features and location
- The inelastic proton-air (and the total p-p) cross section has been measured, giving results in agreement with previous works.
- The analysis will be extended to larger energies (up to 1 PeV), by also using the analog RPC readout, thus covering a region with few experimental information
- More accurate shower age and energy determinations by the use of timing (rise time, front curvature,..) and topological information
- Further checks on systematics will be done (shower fluctuations, interaction models, heavy primaries contribution, ...)