Inclusive J/ψ production: first results in p+p at 7 TeV at ALICE

Daniel Tapia Takaki

For the ALICE Collaboration

CERN & IPN Orsay Université Paris XI, CNRS

Nuclear modifications of the parton distribution functions High-pT jet production in pp, pA and AA High-pT jet propagation in matter Nuclear modifications of the fragmentation functions Correlations'of leading particles Direct photon and heavy flavor tagging

HIGH ENERGY Instituto de Ciencias Nucleares MÉXICO, CITY SEPTEMBER 27th-OCTOBER 1st

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO https://www.nucleares.unam.mx/highpt2010

Plan of this talk

Introduction

ALICE detector

Quarkonia production

First results: p+p collisions at $\sqrt{s_{NN}}$ =7 TeV

Summary

Quarkonia in heavy-ions

Quarkonia suppression was one of the main pieces of evidence for CERN's claim to have produced a QGP phase at SPS energies

Different lattice calculations do not agree on whether the J/ψ is screened or not measurements will have to tell!

Debye screening predicted to destroy J/ψ 's in a QGP with other states "melting" at different temperatures due to different sizes or binding energies

Central to Peripheral Modification Factor (R_{CP})

$$R_{CP}(p_T) = \frac{\langle N_{coll} \rangle_P}{\langle N_{coll} \rangle_C} \times \frac{d^2 N_C / dp_T dy}{d^2 N_P / dp_T dy}$$

C and *P* are two centrality classes, Central and Peripheral N_{coll} are the average number of nucleon-nucleon (N-N) collisions for nucleus-nucleus (A-A) collisions in a given centrality class

• Expect $R_{CP} = 1$ if the A-A collision were merely a superposition of N_{coll} independent N-N collisions

Ref: F Antinori et al. (NA57 Collaboration), Phys. Lett. B 623 (2005) 17

J/ψ CNM effects

pA might be crucial to understand the AA data at LHC energies

arxiv:0912.4498

At PHENIX, CNM effects (EKS shadowing + dissociation from fits to d+Au data, with R. Vogt calculations) give large fraction of observed Au+Au suppression, especially at mid-rapidity

Bottom line: CNM could explain the mid-forward rapidity difference

J/ψ polarisation

- no model explains cross section and polarization simultaneously
- many models on the market
 - Color Singlet Model: LO, NLO, NNLO Color Octet Mechanism: NRQCD...

$$\frac{dN}{d\cos\theta} = A(1 + \lambda\cos^2\theta)$$

Should help constrain production models

Quarkonia in heavy-ions

Energy density (GeV/fm³)

The long standing unambiguous signature of deconfined quark matter has somehow become ambiguous :Suppression pattern "anomalously" comparable at SPS and RHIC.

Rapidity dependence

Different CNM/shadowing effects

Sequential melting : ψ ', χ_c only

Statistical hadronisation : a possible scenario motivated by the large

production of charm in Pb+Pb collisions

The ALICE experiment at the LHC

Physics motivation

- A big step in $\sqrt{s_{NN}}$
 - (SPS x 13 = RHIC) x 28 = LHC
 - Energy density well above the expected phase transition (hotter, bigger, longer)
 - \rightarrow Hard probes as new probes

Heavy Quarks, abundantly produced in the first instant 0.03-0.1 fm/c, will probe QGP/medium over its whole lifetime (~ 10 fm/c) Open beauty and charm physics J/ψ , ψ ' and Y,Y',Y'' as medium thermometer Important B-hadron decays to charmonia yields See talk by Serhiy Senyukov 10

The small-*x* regime

The ALICE experiment

For more details on p+p physics at ALICE, see Jean-Pierre Revol's talk on Monday

The ALICE experiment

Quarkonium Detection in ALICE

Central Barrel |y|<0.9; ITS+TPC+TRD+TOF; electron ID and μ m vertex. 1) J/ ψ , ψ ', Υ , Υ ', Υ '' -> e⁺e⁻; 2) B-> J/ ψ +X->e⁺e⁻; 3) χ_c -> γ +e⁺e⁻ in pp;

Forward muon spectrometer 2.5<|y|<4.0; Muon trigger and tracking; J/ψ , ψ' , Υ , Υ' , $\Upsilon'' \rightarrow \mu^+\mu^-$;

D-hadron & B-electron measurements in |y|<0.9; B-muon and B-dimuons in 2.5<|y|<4.0;

For more details on Heavy quark production at ALICE, see talk by Serhiy Senyukov

J/ψ in the electron decay channel Pb+Pb physics performance |y|<1 and pt>0

ALICE Muon Spectrometer

ALICE Muon Spectrometer

ALICE Muon Spectrometer

- III. Trigger rate < ~1 kHz (DaQ bandwidth for muon)
 - 8 kHz Pb-Pb collisions with L = 10^{27} cm²s⁻¹

J/ψ in the muon decay channel Pb+Pb physics performance

J/ψ production in Pb+Pb

The suppression pattern is a thermometer of the QCD matter produced : clear advantage to have a measurement of J/ψ and Y.

Quarkonia production in Pb+Pb in the Muon Spectrometer

 $\sqrt{s_{_{NN}}}$ =5.5 TeV [2.76 TeV \rightarrow 40 to 55 % in σ]

no recombination central Pb-Pb (0 < b < 3 fm), (MB) no nuclear effects, $p_{\perp} > 1$ GeV/c Running time : 10⁶ s with a Pb-Pb [~90%] luminosity of 5×10²⁶ cm²s⁻¹ [10²⁵ cm²s⁻¹] \rightarrow Good statistics for $\Upsilon(1S)$ $\rightarrow \Upsilon(2S), \Upsilon(3S)$ will requires a few runs J/ ψ statistics allows polarization studies

\Rightarrow In fact for the first PbPb run > 1/100

State	S[10³]	B[10 ³]	S/B	S/(S+B) ¹²
J/ψ	130 (700)	680	0.20	150
Ψ'	3.7 (20)	300	0.01	6.7
Ƴ(1S)	1.3 (7)	0.8	1.7	29
Υ(2S)	0.35 (1.8)	0.54	0.65	12
Ƴ(3S)	0.20 (1.0)	0.42	0.48	8.1

For Heavy-Ion physics at ALICE see Paolo Giubellino's talk on Thursday

First results in p+p at 7 TeV

Preliminary results on J/ψ

Integrated luminosity at ALICE

- INT1-B: minimum bias interaction trigger
 - at least one charged particle in 8 η units
- MUS1-B: single-muon trigger
 - forward muon in coincidence with MB trigger
- SH1-B: high multiplicity trigger

For all these classes, mask (≡ gate) to trigger on the crossing of the colliding bunches.

J/ψ in the electron decay channel First p+p results at 7 TeV

- 110M p-p events at 7 TeV
 - 1/3 of available statistics
- Track reconstruction
 - TPC + ITS

Electron identification (and pion rejection)

- TPC
- TRD could be included later
- Fit with a Cristal Ball function

• |η|<0.9

For Particle ID performance, see Jean-Pierre Revol's talk on Monday 110 M

events

J/ψ in the muon decay channel

- detector performance close to nominal
 - efficiency
 - mass resolution 94 MeV/c² (target is 70 MeV/c²)
- data/analysis flow works well
- recent changes in trigger strategy allows to accumulate more statistic

So far ~ 6000 J/ ψ recorded.

ψ' shows up

J/ψ 's transverse momenta

Comparing results to the MC

Data corrected for acceptance and efficiency

data slightly softer than MC

Generated MC distribution "CDF pp 7TeV"

- p_T extrapolated from CDF results, y obtained from CEM calculations, no polarisation

J/ψ 's transverse momenta

Summary

The ALICE experiment has successfully started the study of Inclusive quarkonia production in p+p interactions at $\sqrt{s_{N}}$ = 7 TeV

- J/ ψ 's rapidity and transverse momentum distribution were presented
- Next: J/ψ's production cross section
 → Top priority : J/ψ analysis to be used as a reference for Pb+Pb

This is only the very beginning... High luminosity p+p, Pb+Pb, p+A collisions