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Abstract. A hadron or nucleus at high energy or small xB j contains many gluons and may be
described as a Color Glass Condensate. Angular and rapidity correlations of two particles produced
in high energy hadron-hadron collisions is a sensitive probe of high gluon density regime of QCD.
Evolution equations which describe rapidity dependence of these correlation functions are derived
from a QCD effective action.
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INTRODUCTION

Electron-proton Deeply Inelastic Scattering (DIS) experiments at HERA has revealed
very interesting and unexpected results on the growth of parton distribution functions
of a proton at small x where x is the fraction of the proton energy carried by a parton.
For Q2 � M2

Z , the dominant process is the exchange of a photon with virtuality Q2

which couples to the quarks in the proton. Variation of the quark structure functions with
virtuality of the photon leads to the gluon distribution function. One of the most exciting
results from HERA experiments was the rather fast growth of gluon distribution function
with decreasing x which led to the development of the field of small x or high energy
QCD (x ≡ Q2

S where S is the virtual photon-hadron center of mass energy squared). A
central question in high energy QCD is the behavior of hadronic cross section at high
energy where one expects high gluon density effects to unitarize the cross section (at
fixed impact parameter) [1, 2]. Roughly speaking when the gluon distribution function is
large enough so that αs xG(x,Q2)

b2
t Q2 ∼ 1, then a proton or nucleus can be thought of as a dense

system of gluons. This relation is satisfied at scale Q2
s , called the saturation scale [3]. The

saturation scale provides a semi-hard scale which allows one to apply weak coupling
methods (αs(Q2

s )<< 1) even though it is a non-perturbative problem due to high gluon
density effects. This enables one to compute, from first principle, quantities such as
number and energy density of gluon produced in a high energy collision, which can not
be computed from the standard collinear factorization based pQCD. Therefore, the CGC
approach is ideally suited for studying soft or semi-hard processes in high energy QCD
as long as the relevant saturation scale is large enough. The CGC approach is based
on an effective action formalism [3] which uses a Wilsonian renormalization group to
re-sum large quantum corrections to the classical solution of the effective action. To do
this, one introduced sources of color charge, ρ , which represent the large x degrees of
freedom and couple to the gluon field. To compute an observable, one solves the classical
equations of motion at fixed color charge ρ and then averages over all color charges



using a weight functional W [ρ(xt)]. This weight functional depends on the rapidity or x
and satisfies a non-linear evolution equation called the JIMWLK equation [4].

STRUCTURE FUNCTIONS IN DIS

In small x limit, the DIS total cross section or the structure function F2 (as well as FL)
can be thought of as a two stage process; first the virtual photon fluctuates into a quark
anti-quark pair (a dipole in fundamental representation) which then scatters on the target
proton or nucleus. This cross section can symbolically written as

F2(x,Q2)∼ |Ψ(z,rt ,Q2)|2⊗T (x,rt ,bt) (1)

where |Ψ(z,rt ,Q2)|2 is squared of the virtual photon wave function, i.e. the probability
for the photon to split into a quark anti-quark pair which are separated in transverse
coordinate space by distance rt , and T is the probability for the dipole with size rt to
scatter on the target at an impact parameter of bt whereas z is the fraction of the photon
energy carried away by the quark. There is a convolution over the dipole size rt and
quark momentum fraction z as well as an integral over the impact parameter bt . The
dipole scattering probability is defines as

T (x,rt ,bt)≡
1

Nc
< tr [1−V †(xt)V (yt)]> (2)

where rt = xt − yt and bt =
1
2(xt + yt). The x (or energy) dependence of the T matrix

comes from inclusion of quantum loop effects which give rise to powers of αs log1/x
and are re-summed by the JIMWLK equation which gives the rapidity evolution of any
observable O as

d
dy
〈O〉= 1

2

〈∫
d2xd2y

δ

δαb
x

η
bd
xy

δ

δαd
y

O

〉
, (3)

where

η
bd
xy =

1
π

∫ d2z
(2π)2

(x− z) · (y− z)
(x− z)2(y− z)2
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1+U†

x Uy−U†
x Uz−U†

z Uy

]bd
(4)

This equation can be used to derive an evolution equation for the dipole scattering
probability and gives

d
dy
〈tr V †

r Vs〉=−
Nc αs

2π2

∫
d2z

(r− s)2

(r− z)2(s− z)2

〈
tr V †

r Vs−
1

Nc
tr V †

r Vz tr VsV †
z

〉
(5)

where y ≡ log1/x and r,s are transverse coordinates of the original quark anti-quark
dipole and z is the transverse coordinate of the radiated gluon after one step in evolution.
This equation is not a closed form equation in the sense that it couples the evolution
of expectation value of two Wilson lines to the expectation value of a higher number
of Wilson lines. It can and has been solved numerically using lattice gauge theory
techniques. Nevertheless, to gain some insight, it is useful to make a large Nc and mean



field approximation in order to reduce it to a closed form equation which is known as
the Balitsky-Kovchegov (BK) equation [5]:

d
dy

S(r− s) =−Nc αs

2π2

∫
d2z

(r− s)2

(r− z)2(s− z)2

[
S(r− s)−S(r− z)S(z− s)

]
(6)

where S(r− s) is defined as

S(r− s)≡ 1
Nc

< tr V †
r Vs > (7)

The S matrix is the basic building block that appears in many processes computed in the
CGC formalism, such as the inclusive structure functions in DIS and single particle
production in proton-nucleus collisions in the forward rapidity region. For instance,
single hadron production cross section in pA collisions can be written as [6, 7]

dσ pA→hX

dY d2Pt d2b
=

1
(2π)2

∫ 1

xF

dx
x

xF

{
fq/p(x,Q

2) S[
x

xF
Pt ,b] Dh/q(

xF

x
,Q2)+

fg/p(x,Q
2) SA[

x
xF

Pt ,b] Dg/h(
xF

x
,Q2)

}
(8)

where S and SA are the fundamental and adjoint dipoles and f and D are the parton
distribution functions of the incoming proton and fragmentation functions of the out-
going partons. Quite recently, Next to Leading Order corrections to the BK equation
have recently been computed [8]. The biggest contribution is due to the running cou-
pling constant which changes the evolution kernel. The solution to the BK equation with
running coupling has been used to fit the single hadron production in deuteron-nucleus
collisions at RHIC at rapidities of y≥ 2.2 and can be taken as a strong indication for the
validity of application of CGC formalism to small x processes [9]. The main theoretical
uncertainty is the role of large x (from the projectile) partons scattering from the target
and possibly losing energy, usually referred to as cold matter energy loss [10]. It will
be helpful to compare the CGC predictions with those of other approaches for electro-
magnetic processes [11] since in the CGC approach electromagnetic processes can be
related to single hadron production in pA collisions [12]. For more details, we refer the
reader to some recent reviews on CGC and its applications [13].

Di-jet production in DIS and proton-nucleus collisions

While fully inclusive quantities such as structure functions, and single inclusive par-
ticle production in proton-nucleus (pA) collisions involve dipoles as the basic build-
ing blocks of the cross section, di-jet production in either DIS or pA collisions involve
higher point correlators of Wilson lines. For instance, quark anti-quark as well as two
gluon production in DIS involve correlators of at least four Wilson lines, knows as a
quadrupole [12, 14]. Here we focus on the structure of the higher point correlators on



Wilson lines that appear in quark-gluon production in pA collisions [14, 15]. The pro-
duction cross section involves the following correlators, which we call O4 and O6

O4(r, r̄ : s)≡ tr V †
r taVr̄ tb [Us]

ab =
1
2

[
tr V †

r Vs tr Vr̄ V †
s −

1
Nc

tr V †
r Vr̄

]
(9)

and
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r̄ ta tb [UsU†

s̄ ]
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1
2

[
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1

Nc
tr Vr V †
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]
(10)

where the following identity between adjoint and fundamental matrices is used

Uab tb =V † taV. (11)

In order to determine the x dependence of these higher point correlators, one needs to
solve the JIMWLK equation for the weight functional W [ρ(xt)] which can then be used
to evaluate these correlators at the rapidity of interest. However, this has not been done
yet. Therefore, here we write down the explicit evolution equations that these correlators
satisfy [16]:
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(12)

We note that the leading Nc part of the above evolution equation involves only products
of dipoles (when properly normalized) whereas the sub-leading Nc parts involve correla-
tors of larger number of Wilson lines. Since O4 appears explicitly in the evolution equa-
tion for the dipole scattering probability, one concludes that with leading Nc accuracy,
structure functions in DIS and single particle production are sensitive only to dipoles
which satisfy the BK evolution equation. We now consider the evolution equation for O6
which also appears in di-jet production cross section, in both DIS and proton-nucleus
collisions. It is given by
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+
1
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We note the appearance of the quadrupole terms involving four Wilson lines of the
form, tr VzV †

r̄ Vs̄V †
s for the first time. These terms can not be written as products of two

dipoles [17] and as is clear from above, would evolve with energy differently differently
(for an interesting limit where these expression simplify, see [18]). We also note that
there are a large number of sub-leading Nc terms appearing on the right hand side of
the equation. This may lead to significant violation of large Nc approximation for di-jet
production.

It is also worth noting appearance of the dipole scattering probability, proportional
to O2 on the right hand side of the equation. This is intriguing since in the evolution
of all other correlators of Wilson lines only higher point correlators of Wilson lines
appear on the right hand side of the evolution equation. This has some resemblance to
the phenomenon of "pomeron loops" [19] where in the evolution equation for the two
point function square root of the two point function appears on the right hand side. Here,
the origin of this term seems to be purely kinematic.

The most interesting aspect of these higher point correlators may be their energy
dependence [20]. If one assumes, as naively expected, that a four point functions would
evolve faster with rapidity than a two point function (but slower than square of two
point function), then the Nc suppression of these terms can eventually be compensated
by the stronger energy dependence. In passing, we note that photon-hadron correlations
in pA offer a unique observable where one can investigate the angular dependence of the
production and that the production cross section involves only dipoles [21].

Two hadron production in DIS or proton-nucleus collisions at high energy therefore
offer a unique opportunity to go beyond the dipole approximation and to probe the
correlators of Wilson lines, the effective degrees of freedom in CGC. Since there is new
and exciting data on di-jet correlations in the forward rapidity region at RHIC, there
is a need to solve the JIMWLK equation in order to make a quantitative comparison
between the predictions of CGC and the experimental data. The LHC will also soon
measure these correlations at even smaller x which would further probe the dynamics of
gluon saturation and CGC.

Another interesting phenomenon where higher point correlators of Wilson lines ap-
pear is in the long range rapidity correlations measured in heavy ion and proton-proton
collisions. This correlation must be generated very early after the collision due to causal-
ity [22] and survives the subsequent final state re-scatterings present in the Quark-Gluon
Plasma generated in heavy ion collisions. Even though calculation of gluon production
in heavy ion collisions can not be carried out analytically, one can consider the high pt
region (just above Qs) where a kt factorized form of the cross section may be written
down. This cross section will also involve higher point functions of the produced gluon
fields [23] which can not be written as products of two-point functions. Very recent ob-
servation of this long range rapidity correlation, also known as the ridge, by the CMS
collaboration at the LHC [24] has generated much excitement. While a quantitative un-
derstanding of the data requires detailed modeling, qualitative features of the data agree
with the CGC calculations [25].
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