A glimpse into the future: The physics of hot and dense QCD matter

Alejandro Ayala

Instituto de Ciencias Nucleares, UNAM

ayala@nucleares.unam.mx

October 28, 2017

・ロト ・ 日 ト ・ 田 ト ・

æ

1 QCD phase diagram

- Finite temperature and vanishing baryon chemical potential
- Non-vanishing baryon chemical potential: The sign problem.

2 QCD phase diagram from chiral symmetry restoration

- Linear sigma model with quarks
- Effective potential

3 Results: Critical End Point location

4 Conclusions

QCD phase diagram

Guy Fest 2017

э

QCD phase diagram: current and future experiments

Alejandro Ayala (ICN-UNAM)

October 28, 2017 5 / 32

QCD phase diagram

Alejandro Ayala (ICN-UNAM)

October 28, 2017 6 / 32

- It is an analytic crossover for $\mu = 0$ (there are no divergences in thermodynamic quantities). There are no symmetries to break. It would be a real phase transition for massless quarks.
- For T = 0 it is a first order phase transition
- The first order phase transition turns into a crossover somewhere in the middle

Light quark condensate $\langle \bar{\psi}\psi \rangle$ from lattice QCD

A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).

 T_c from susceptibility's peak for 2+1 flavors using different kinds of fermion representations. Values show some discrepancies:

- MILC collaboration: $T_c = 169(12)(4)$ MeV.
- BNL-RBC-Bielefeld collaboration: $T_c = 192(7)(4)$ MeV.
- Wuppertal-Budapest collaboration has consistently obtained smaller values, the last being $T_c = 147(2)(3)$ MeV.
- HotQCD collaboration: $T_c = 154(9)$ MeV.

Differences may be attributed to different lattice spacings

For $\mu_B \neq 0$ matters get complicated: Sign problem

The sign problem

- Lattice QCD is affected by the sign problem
- The calculation of the partition function produces a fermion determinant.

$$\operatorname{Det} M = \operatorname{Det} (
ot\!\!/ \!\!/ \!\!/ \!\!/ \!\!/ + m + \mu \gamma_0)$$

• Consider a complex value for μ . Take the determinant on both sides of the identity

$$\gamma_5(\not D+m+\mu\gamma_0)\gamma_5=(\not D+m-\mu^*\gamma_0)^{\dagger},$$

we obtain

This shows that the determinant is not real unless $\mu = 0$ or purely imaginary

Alejandro Ayala (ICN-UNAM)

For real μ it is not possible to carry out the direct sampling on a finite density ensemble by Monte Carlo methods

• It'd seem that the problem is not so bad since we could naively write

$$\operatorname{Det} M = |\operatorname{Det} M| e^{i\theta}$$

• To compute the thermal average of an observable O we write

$$\langle O \rangle = \frac{\int DUe^{-S_{YM}} \operatorname{Det} M O}{\int DUe^{-S_{YM}} \operatorname{Det} M} = \frac{\int DUe^{-S_{YM}} |\operatorname{Det} M| e^{i\theta} O}{\int DUe^{-S_{YM}} |\operatorname{Det} M| e^{i\theta}},$$

• S_{YM} is the Yang-Mills action.

The sign problem

• Written in this way, the simulations can be made in terms of the *phase quenched theory* where the measure involves |DetM| and the thermal average can be written as

$$\langle O
angle = rac{\langle O e^{i heta}
angle_{
m pq}}{\langle e^{i heta}
angle_{
m pq}}$$

• The average phase factor (also called the average sign) in the **phase quenched theory** can be written as

$$\langle e^{i\theta} \rangle_{pq} = e^{-V(f-f_{pq})/T},$$

where f y f_{pq} are the free energy densities of the full and the phase quenched theories, respectively and V is the 3-dimensional volume.
If f - f_{pq} ≠ 0, the average phase factor decreaces exponentially when V grows (thermodynamical limit) and/or when T goes to zero.

Under these circumstances the signal/noise ratio worsens. This is known as the severe sign problem

Alejandro Ayala (ICN-UNAM)

The curvature κ of the transition line

$$\frac{T_c(\mu_B)}{T_c(\mu_B=0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2$$

Chiral transition and freeze out curve

Chiral transition, hadronization and freeze-out

QCD phase diagram from analytic continuation

QCD phase diagram from analytic continuation

R. Bellwiede, S. Borsanyi, Z. Fodor, J. Gnther, S. D. Katz, C. Ratti, K. K. Szabo, Phys. Lett. B 751, 559-564 (2015).

The Critical End Point (CEP)

$\mu^{E}{}_{B}$ =266 ~ 504 MeV, T_{E} = 115~162, $\mu^{E}{}_{B}/$ T_{E} =1.8~4.38

Xiaofeng Luo

ISMD 2016, Jeju, Korea, Aug. 29-Sept. 2, 2016

3/18

October 28, 2017

CEP location $\mu_B/T > 2$ for 135 MeV < T < 155 MeV

A. Bazavov, et al., Phys. Rev. D 95, 054504 (2017).

Linear Sigma Model with Quarks

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu}\sigma)^2 + \frac{1}{2} (\partial_{\mu}\vec{\pi})^2 + \frac{a^2}{2} (\sigma^2 + \vec{\pi}^2) - \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2$$

+ $i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - g\bar{\psi}(\sigma + i\gamma_5\vec{\tau}\cdot\vec{\pi})\psi,$

 $\sigma \rightarrow \sigma + v$,

$$m_{\sigma}^{2} = 3\lambda v^{2} - a^{2},$$

$$m_{\pi}^{2} = \lambda v^{2} - a^{2},$$

$$m_{f} = gv.$$

æ

→ < ∃ →</p>

Image: A matrix of the second seco

Three level potential (vacuum stability)

$$V^{ ext{tree}}(v) = -rac{a^2}{2}v^2 + rac{\lambda}{4}v^4$$
 $v_0 = \sqrt{rac{a^2}{\lambda}},$

$$V^{\text{tree}} = -\frac{a^2}{2}v^2 + \frac{\lambda}{4}v^4 \rightarrow -\frac{(a^2 + \delta a^2)}{2}v^2 + \frac{(\lambda + \delta \lambda)}{4}v^4.$$

 δa^2 and $\delta \lambda$ constants to be determined from the properties of the phase transitions at ($\mu_B = 0, T^c(\mu_B = 0)$) and ($\mu_B^c(T = 0), T = 0$).

M. E. Carrington, Phys. Rev. D 45, 2933

One-loop boson and fermion effective potential

$$V^{(1)b}(v,T) = T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \ln D(\omega_{n},\vec{k})^{1/2},$$
$$D(\omega_{n},\vec{k}) = \frac{1}{\omega_{n}^{2} + k^{2} + m_{b}^{2}},$$
$$V^{(1)f}(v,T,\mu_{q}) = -T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} \operatorname{Tr}[\ln S(\tilde{\omega}_{n} - i\mu_{q},\vec{k})^{-1}],$$
$$S(\tilde{\omega}_{n},\vec{k}) = \frac{1}{\gamma_{0}\tilde{\omega}_{n} + \not{k} + m_{f}}.$$
$$\omega_{n} = 2n\pi T \text{ and } \tilde{\omega}_{n} = (2n+1)\pi T \text{ are}$$
the boson and fermion Matsubara frequencies

э

Ring-diagrams effective potential

$$V^{\text{Ring}}(v, T, \mu_q) = \frac{T}{2} \sum_n \int \frac{d^3k}{(2\pi)^3} \times \ln[1 + \prod(m_b, T, \mu_q)D(\omega_n, \vec{k})]$$

 $\Pi(m_b, T, \mu_q)$ is the boson's self-energy.

Alejandro Ayala (ICN-UNAM)

Diagrams contributing to bosons' self-energies

$$\Pi(T, \mu_q) = -N_f N_c g^2 \frac{T^2}{\pi^2} [\text{Li}_2(-e^{\mu_q/T}) + \text{Li}_2(-e^{-\mu_q/T})] + \frac{\lambda T^2}{2}$$

< 🗗 🕨

э

Effective potential: High T approximation

$$\begin{split} V_{\rm HT}^{\rm eff} &= -\frac{\left(a^2 + \delta a^2\right)}{2}v^2 + \frac{\left(\lambda + \delta \lambda\right)}{4}v^4 \\ &+ \sum_{b=\sigma,\bar{\pi}} \left\{ -\frac{m_b^4}{64\pi^2} \Big[\ln\left(\frac{a^2}{4\pi T^2}\right) - \gamma_E + \frac{1}{2} \Big] \\ &- \frac{\pi^2 T^4}{90} + \frac{m_b^2 T^2}{24} - \frac{\left(m_b^2 + \Pi(T,\mu_q)\right)^{3/2} T}{12\pi} \right\} \\ &+ \sum_{f=u,d} \left\{ \frac{m_f^4}{16\pi^2} \Big[\ln\left(\frac{a^2}{4\pi T^2}\right) - \gamma_E + \frac{1}{2} \\ &- \psi^0 \Big(\frac{1}{2} + \frac{i\mu_q}{2\pi T}\Big) - \psi^0 \Big(\frac{1}{2} - \frac{i\mu_q}{2\pi T}\Big) \Big] \\ &- 8m_f^2 T^2 \Big[{\rm Li}_2(-e^{\mu_q/T}) + {\rm Li}_2(-e^{-\mu_q/T}) \Big] \\ &+ 32 T^4 \Big[{\rm Li}_4(-e^{\mu_q/T}) + {\rm Li}_4(-e^{-\mu_q/T}) \Big] \Big\} \end{split}$$

Alejandro Ayala (ICN-UNAM)

Effective potential: Low T approximation

$$\begin{split} V_{\rm LT}^{\rm eff} &= -\frac{\left(a^2 + \delta a^2\right)}{2}v^2 + \frac{\left(\lambda + \delta\lambda\right)}{4}v^4 \\ &- \sum_{i=\sigma,\bar{\pi}} \Big\{ \frac{m_i^4}{64\pi^2} \Big[\ln\Big(\frac{4\pi^2 a^2}{(\mu_b + \sqrt{\mu_b^2 - m_i^2})^2}\Big) - \gamma_E + \frac{1}{2} \Big] - \frac{T^2\mu_b}{12}\sqrt{2\mu_b^2 - 5m_i^2} \\ &- \frac{\mu_b\sqrt{\mu_b^2 - m_i^2}}{24\pi^2} (2\mu_b^2 - 5m_i^2) - \frac{\pi^2 T^4\mu_b}{180} \frac{(2\mu_b^2 - 3m_i^2)}{(\mu_b^2 - m_i^2)^{3/2}} \Big\} \\ &+ N_c \sum_{f=u,d} \Big\{ \frac{m_f^4}{16\pi^2} \Big[\ln\Big(\frac{4\pi^2 a^2}{(\mu_q + \sqrt{\mu_q^2 - m_f^2})^2}\Big) - \gamma_E + \frac{1}{2} \Big] - \frac{T^2\mu_q}{6}\sqrt{\mu_q^2 - m_f^2} \\ &- \frac{\mu_q\sqrt{\mu_q^2 - m_f^2}}{24\pi^2} (2\mu_q^2 - 5m_f^2) - \frac{7\pi^2 T^4\mu_q}{360} \frac{(2\mu_q^2 - 3m_f^2)}{(\mu_q^2 - m_f^2)^{3/2}} \Big\} \end{split}$$

э

Effective potential (High and Low T)

A. A., S. Hernández-Ortiz, L. A. Hernández, arXiv:1710.09007.

 $\mu_q = \mu_b$

Upper line: $T_0^c(\mu_q = 0) = 175 \text{ MeV}$ and $\mu_q^c(T = 0) = 350 \text{ MeV}$ Lower line: $T_0^c(\mu_q = 0) = 165 \text{ MeV}$ and $\mu_q^c(T = 0) = 330 \text{ MeV}$ $0.80 < \lambda < 0.91$ and 1.56 < g < 1.62

A. A., S. Hernández-Ortiz, L. A. Hernández, arXiv:1710.09007.

Alejandro Ayala (ICN-UNAM)

$$\mu_q = 2\mu_b$$

Upper line: $T_0^c(\mu_q = 0) = 175$ MeV and $\mu_q^c(T = 0) = 350$ MeV Lower line: $T_0^c(\mu_q = 0) = 165$ MeV and $\mu_q^c(T = 0) = 330$ MeV $0.85 < \lambda < 1.40$ and 1.53 < g < 1.69

A. A., S. Hernández-Ortiz, L. A. Hernández, arXiv:1710.09007.

Alejandro Ayala (ICN-UNAM)

$\mu_q = 0.5 \mu_b$

Upper line: $T_0^c(\mu_q = 0) = 175 \text{ MeV}$ and $\mu_q^c(T = 0) = 350 \text{ MeV}$ Lower line: $T_0^c(\mu_q = 0) = 165 \text{ MeV}$ and $\mu_q^c(T = 0) = 330 \text{ MeV}$ $0.79 < \lambda < 1.10 \text{ and } 1.57 < g < 1.62$

A. A., S. Hernández-Ortiz, L. A. Hernández, arXiv:1710.09007.

Alejandro Ayala (ICN-UNAM)

- Main goal of future experiments in the field heavy-ion physics is to study QDC at finite baryon density.
- Many challenges. Of particular importance to determine whether there is a CEP.
- Lattice QCD still far from providing an answer. Need theoretical hindsight.
- Effective models are useful tools to gain insight into the properties of strongly interacting matter.
- Linear sigma model is one possibility: Complete exploration allowing the couplings to bear baryon density and temperature effects. Stay tunned.

Happy Birthday Guy! Congratulations for the many years of successes! May it be many more!

