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Abstract. We study the QCD phase diagram using the linear sigma model coupled to
quarks. We compute the effective potential at finite temperature and quark chemical
potential up to ring diagrams contribution. We show that, provided the values for the
pseudo-critical temperature Tc = 155 MeV and critical baryon chemical potential µBc ' 1
GeV, together with the vacuum sigma and pion masses. The model couplings can be fixed
and that these in turn help to locate the region where the crossover transition line becomes
first order.

1 Introduction

The description of the QCD phase diagram on the T and µ plane reveals profound information for the
different phases of strongly interacting matter under extreme conditions such that high temperatures
and densities. Most of our knowledge of this phase diagram is restricted to the region for low values of
µ. Lattice QCD has found values for a crossover transition with a critical temperature Tc ∼ 155 MeV
considering 2 + 1 quark flavours Ref. [1]. On the other hand, effective models find that for T ∼ 0 there
is a first order phase transition Ref. [2]. This means that there must be a point in the diagram where
both transitions converge and such point is generally refered to as the critical end point (CEP). In this
work we used the Linear Sigma Model coupled to quarks (LSMq) to locate the CEP. We organize the
content as follows: In Sec. 2, we give an overview of the main properties of LSMq. In Sec. 3, we
show the effective potential at high and low-temperature. In Sec. 4, we use the effective potential to
determine the coupling constants and to locate the CEP. Finally we summarize and conclude in Sec 5.

2 Linear Sigma Model coupled to quarks

We study the restoration of the chiral symmetry using an effective model that accounts for the physics
of the spontaneous symmetry breaking at finite temperature and density, the linear sigma model. In
order to account to the fermion degrees of freedom around the phase transition, we also include quarks
in this model. The Lagrangian for this model is given by
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(σ2 + ~π2)2 + iψγµ∂µψ − gψ(σ + iγ5~τ · ~π)ψ (1)

where ψ is an SU(2) isospin doublet, σ is an isospin singlet and ~π is an isospin triplet. λ is the boson’s
self-coupling and g is the fermion-boson coupling. a2 > 0 is the mass parameter. The Lagrangian
admits a broken symmetry vaccum solution given by the minimum of the classical potential when λ
is positive, this means that the sigma field σ develops a vacuum expectation value v that becomes in
the order parameter of the theory. Shifting the field as σ + v0, notice the three pions, sigma and the
constituent quarks develop the vacuum masses

m2
σ = 3λv2 − a2, m2

π = λv2 − a2,

m f = gv, (2)

respectively. We take their conservative vacuum values as mσ = 450 MeV, mπ = 140 MeV, m f = 300
MeV Ref. [3]. Finally, we can fix the value of a using these vacuum values togheter with the first of
Eqs. (2)

a =

√
m2
σ − 3m2

π

2
. (3)

3 Effective potential
We compute the effective potential and the self-energies in the limit where the masses and quark
chemical potential are small compared to the temperature, and we include contributions up to ring
diagrams. Taking the renormalization scale as µ̃ = ae−1/2, see Ref. [4]. For low temperatures, we
compute up to the 1-loop correction which is given by the expressions in Ref. [5]. To compute 1-loop
contribution within both approximations, we start from the following expressions
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where ωn = 2nπT and ω̃n = (2n + 1)πT .

3.1 Effective potential at high temperature

The effective potential in the high temperature approximation is computed in Ref. [3] and is given
explicitly by
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where the self-energy has the expression
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3.2 Effective potential at low temperature

The effective potential in the low temperature approximation is calculated in the same fashion as
Ref. [4] and the result is
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where the boson chemical potential µb is taken as a fraction b of the quark chemical potential,
namelly, b = µb/µq and the baryon chemical potential is given by µB = 3µq. The boson chemical
potential µb provides the information on the average number of boson particles interacting between
both phases at high densities.

4 Coupling Constants and location of CEP
To determine a unique transition curve of the QCD phase diagram, we compute the coupling constants
and the critical values (µBc,Tc), in order to determine the parameters λ and g, we solve a system of
equations obtained from the conditions

dV l
e f f

dv

∣∣∣∣∣
v=0,T=0,µ=µc

=
dV l

e f f

dv

∣∣∣∣∣
v=v1,T=0,µ=µc

= 0 (8)

V l
e f f (0, 0, µc) = V l

e f f (v1, 0, µc) (9)
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where the critical temperature is taken as Tc = 170 Mev for 2 light flavors, see Ref. [7], the critical
quark chemical potential µc ∼ 340 MeV Ref. [8], the dynamical quark mass mq = 300 MeV and the
v0 is the expectation value of sigma. Notice that on the boundary of the first order phase transitions
the effective potential shows two minima, one at v = 0 and the other at v = v1. By solving the Eqs.
(8), (9) and (10) the coupling constants are λ = 0.897 and g = 1.57. For details see Ref. [9]. Finally,
we consider an interpolation between both approximations of the effective potential finding the lines
that correspond to the phase order transitions. The region where they converge locates the position of
the CEP which is approximately given by (µCEP/Tc,TCEP/Tc) ∼ (0.993, 0.113).



Figure 1: Effective QCD phase diagram obtained for λ = 0.897 and g = 1.57, taking the critical
temperature for two light flavors as Tc = 170 MeV at µ = 0 MeV and critial quark chemical potential
µqc = 340 MeV at T = 0 MeV. The dashed line represents the second order transition and the solid
line represents the first order transition. The CEP is located at (µCEP/Tc,TCEP/Tc) ∼ (0.993, 0.113).

5 Conclusion

In this work we have explored the QCD phase diagram using the LSMq considering the approximation
of the effective potential in the high temperature up to ring diagrams order and in the low temperature
working up to 1-loop correction. The phase diagram derived within these approximation gives us
information on the location of the CEP and we conclude that the LSMq is a suitable effective model
to describe the phase transition in the temperature and density plane to understand much better the
chiral restoration symmetry.
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