Locating the critical end point using the linear sigma model coupled to quarks.

Saúl Hernández-Ortiz

A. Ayala, J. Castaño, J. Flores, L.A. Hernández, P. Mercado

ISMD 2017, Tlaxcala City. September 11, 2017 Instituto de Ciencias Nucleares UNAM

Outline

- Motivation
- The Linear Sigma model
 - High Temperature Approximation
 - Low Temperature Approximation
- Preliminary Results
- Final Comments

Motivation

There are several phases of QCD. We are interested in studying the transition between these phases.

High Energies

Asymptotic freedom

- Low Energies
 - Confinement

Motivation

 QCD under extreme conditions (temperature and finite quark density) play an important role in understanding the transitions that took place in the early universe.

Motivation

- There is only reliable information at low densities.
- There are experimental efforts to dissipate doubts at higher densities.
 - NICARHIC(BES)
 - JPARC
 - FAIR

• Effective model for low-energy QCD.

• Effects of quarks and mesons on the chiral phase transition.

 Implement ideas of chiral symmetry and spontaneous symmetry breaking

Lagrangian

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu}\sigma\right)^{2} + \frac{1}{2} \left(\partial_{\mu}\vec{\pi}\right)^{2} + \frac{a^{2}}{2} \left(\sigma^{2} + \vec{\pi}^{2}\right) - \frac{\lambda}{4} \left(\sigma^{2} + \vec{\pi}^{2}\right)^{2} + i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - g\bar{\psi}(\sigma + i\gamma_{5}\vec{\tau}\cdot\vec{\pi})\psi,$$

To allow for spontaneous symmetry breaking

$$\sigma \to \sigma + v$$
$$\langle \sigma \rangle = v; \qquad \langle \pi \rangle = 0.$$

ullet where v is identified as the order parameter

• After the shift

with masses

$$m_{\sigma}^{2} = 3\lambda v^{2} - a^{2}$$
$$m_{\pi}^{2} = \lambda v^{2} - a^{2}$$
$$m_{f}^{2} = gv$$

$$\mathcal{L} = -\frac{1}{2} [\sigma(\partial_{\mu} + iqA_{\mu})^{2}\sigma] - \frac{1}{2} (3\lambda v^{2} - a^{2}) \sigma^{2}$$

$$-\frac{1}{2} [\vec{\pi}(\partial_{\mu} + iqA_{\mu})^{2}\vec{\pi}] - \frac{1}{2} (\lambda v^{2} - a^{2}) \vec{\pi}^{2}$$

$$+ i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - gv\bar{\psi}\psi + \frac{a^{2}}{2}v^{2} - \frac{\lambda}{4}v^{4}$$

$$-\frac{\lambda}{4} [(\sigma^{2} + \pi_{0}^{2})^{2} + 4\pi^{+}\pi^{-}(\sigma^{2} + \pi_{0}^{2} + \pi^{+}\pi^{-})]$$

$$-g\hat{\psi}(\sigma + i\gamma_{5}\vec{\tau} \cdot \vec{\pi})\psi$$

$$a = \sqrt{\frac{m_{\sigma}^{2} - 3m_{\pi}^{2}}{2}}$$

 We calculate the effective potential for fermions and bosons at finite temperature and quark chemical potential beyond the mean field approximation.

$$V_b = s_b T \sum_n \int \frac{d^3 k}{(2\pi)^3} \ln \left(D^{-1} \right),^{1/2} \quad V_f = s_f T \sum_n \int \frac{d^3 k}{(2\pi)^3} \ln \left(S^{-1} \right).$$
$$V^{ring} = \frac{1}{2} s_b T \sum_n \int \frac{d^3 k}{(2\pi)^3} \ln \left[1 + \Pi D \right]$$

where boson and fermion propagators are given by

$$D = \frac{1}{k^2 + m_b^2 + \omega_n^2}, \qquad \qquad S = \frac{k + m_f}{k^2 + m_f^2 + (\omega_n - i\mu)^2}.$$

High temperatures

with Π the self energy

$$\Pi = \lambda \frac{T^2}{2} - N_f N_c g^2 \frac{T^2}{\pi^2} [Li_2(-e^{\mu/T}) + Li_2(-e^{-\mu/T})]$$

 For high temperatures we include the next term in the perturbative series, the ring diagrams (Dolan & Jackiw, Phys. Rev. D12 3320 (1974)) that considers screening properties of the plasma

M. Le Bellac, Thermal Field Theory (Cambridge Univ. Press, Cambridge 2000).

$$\begin{split} V_{HT}^{(eff)} = & \boxed{-\frac{a^2}{2}v^2 + \frac{\lambda}{4}v^4} + \sum_{i=\sigma,\pi^0} \left\{ \frac{m_i^4}{64\pi^2} \left[\ln\left(\frac{(4\pi T)^2}{2a^2}\right) - 2\gamma_E + 1 \right] \\ & -\frac{\pi^2 T^4}{90} + \frac{m_i^2 T^2}{24} - \frac{T}{12\pi} (m_i^2 + \Pi)^{3/2} \right\} \\ & -N_c \sum_{f=u,d} \left[\frac{m_f^4}{16\pi^2} \left[\ln\left(\frac{(4\pi T)^2}{2a^2}\right) + \psi^0\left(\frac{1}{2} + \frac{i\mu}{2\pi T}\right) \right. \\ & + \psi^0\left(\frac{1}{2} - \frac{i\mu}{2\pi T}\right) \right] + 8m_f^2 T^2 [Li_2(-e^{\mu/T}) + Li_2(-e^{-\mu/T})] \\ & - 32T^4 [Li_4(-e^{\mu/T}) + Li_4(-e^{-\mu/T})] \right] \end{split}$$

The parameter space consists of the λ and g coupling constants which are determined uniquely by the Goldstone boson mass at two fixed points

Low Temperature

 For high quark chemical potential, first we compute the effective potential at T=0 and finite μ, i.e.

$$V_{f}^{0} = N_{c} \sum_{f=u,d} \left\{ \frac{m_{f}^{4}}{16\pi^{2}} \left[\ln \left(\frac{4\pi a^{2}}{\mu + \sqrt{\mu^{2} - m_{f}^{2}}} \right) + \frac{1}{2} - \gamma_{E} \right] - \frac{\mu \sqrt{\mu^{2} - m_{f}^{2}}}{24\pi^{2}} \left(2\mu^{2} - 5m_{f}^{2} \right) \right\}$$
$$V_{b}^{0} = -\sum_{i=\sigma,\vec{\pi}} \left\{ \frac{m_{i}^{4}}{64\pi^{2}} \left[\ln \left(\frac{4\pi a^{2}}{\mu_{b} + \sqrt{\mu_{b}^{2} - m_{f}^{2}}} \right) + \frac{1}{2} - \gamma_{E} \right] - \frac{\mu_{b} \sqrt{\mu_{b}^{2} - m_{f}^{2}}}{96\pi^{2}} \left(2\mu_{b}^{2} - 5m_{f}^{2} \right) \right\}$$

µb is a bosonic density that it is related with the quark chemical potential.

Low Temperature

 The low-T approximation can be obtained from its expression at T = 0 as

$$V_f(T,\mu) = \sum_{f=u,d} \int_{\frac{\mu-m_f}{T}}^{\infty} V_f^0(\mu + xT) h_F(x) dx,$$

$$V_b(T,\mu_b) = \sum_{i=\sigma,\vec{\pi}} \int_{\frac{\mu_b-m_i}{T}}^{\infty} V_b^0(\mu+xT)h_B(x)dx$$

where $h_F(x)$ and $h_B(x)$ are the derivate of Fermi-Dirac and Bose-Einstein distributions. (C. O. Dib & R. Espinosa, Nucl. Phys. B 612, 492)

Low Temperature

• Now, for $T \ll \mu, \mu_b$ both potentials can be expanded in a Taylor series in $T \rightarrow 0$ because they varies slowly under the hump and then obtain the low temperature expansion.

$$V_f(T,\mu) = V_f^0(\mu) + \frac{\pi^2}{6}T^2 \frac{\partial^2}{\partial T^2} V_f^0(\mu) + \frac{7\pi^4}{360}T^4 \frac{\partial^4}{\partial T^4} V_f^0(\mu)$$

$$V_b(T,\mu) = V_b^0(\mu) + \frac{\pi^2}{12}T^2 \frac{\partial^2}{\partial T^2} V_b^0(\mu) + \frac{\pi^4}{1260}T^4 \frac{\partial^4}{\partial T^4} V_f^0(\mu)$$

$$V_{LT}^{eff}(T,\mu) = \boxed{-\frac{a^2}{2}v^2 + \frac{\lambda}{4}v^4} + N_c \sum_{f=u,d} \left\{ \frac{m_f^4}{16\pi^2} \left[\ln\left(\frac{4\pi a^2}{\mu + \sqrt{\mu^2 - m_f^2}}\right) + \frac{1}{2} - \gamma_E \right] - \frac{\mu\sqrt{\mu^2 - m_f^2}}{24\pi^2} (2\mu^2 - 5m_f^2) - \frac{T^2}{6}\mu\sqrt{\mu^2 - m_f^2} - \frac{7\pi^2 T^4}{360} \frac{\mu(2\mu^2 - 3m_f^2)}{(\mu^2 - m_f^2)^{\frac{3}{2}}} \right\} - \sum_{i=\sigma,\vec{\pi}} \left\{ \frac{m_i^4}{64\pi^2} \left[\ln\left(\frac{4\pi a^2}{\mu_b + \sqrt{\mu_b^2 - m_i^2}}\right) + \frac{1}{2} - \gamma_E \right] - \frac{\mu_b\sqrt{\mu_b^2 - m_i^2}}{24\pi^2} (2\mu_b^2 - 5m_i^2) - \frac{T^2}{12}\mu_b\sqrt{\mu_b^2 - m_i^2} - \frac{\pi^2 T^4}{180} \frac{\mu_b(2\mu_b^2 - 3m_i^2)}{(\mu_b^2 - m_i^2)^{\frac{3}{2}}} \right\}$$

Coupling Constants

 Now, the system of equations to be solved for points A and B are

$$-a^2 + \frac{\lambda}{2}T_c^2 + N_c N_f \frac{g^2}{6}T_c^2 = 0$$

$$\lambda v_1^2 - a^2 - \frac{3\lambda}{4\pi^2} \mu_{bc}^2 + N_c N_f \frac{g^2}{2\pi^2} \mu_c^2 = 0$$

Coupling Constants

- Now the criterion to find the temperature and the chemical potential where the chiral symmetry is restored, is the following.
 - Second Order \bigcirc

$$\left. \frac{\partial^2}{\partial v^2} V^{eff} \right|_{v=0} = 0$$

First Order \bigcirc

For Details...

Using the LSMq to describe the QCD phase diagram and to locate the CEP.

Flores, José Antonio.

Locating QCD's critical end point (with functional methods) Christian Fisher.

Supporting the search for the CEP location with nonlocal PNJL models constrained by Lattice QCD

Final Comments

- Working in the LSMq, CEP is located in the region found by others effective models.
- We computed the effective potential and included plasma screening effects through the boson's self energy.
- We found the CEP at $\{\mu_{CEP} = 0.98 \mu_c, \ T_{CEP} = 0.17 T_c\}$ $\{\mu_{CEP} = 0.99 \mu_c, \ T_{CEP} = 0.12 T_c\}$

Many Thanks!!! Gracias!!!