

Medium response to jets in heavy ion collisions

Yasuki Tachibana

Central China Normal University

ISMD 2017, Tlaxcala City, September 15th, 2017

Introduction

SMD2017 Yasuki Tachibana, September 15th 2017

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

• Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

• Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

• Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Modification of jet structure

• Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

SMD2017 Yasuki Tachibana, September 15th 2017

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Modification of jet structure

• Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

SMD2017 Yasuki Tachibana, September 15th 2017

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Modification of jet structure

• Medium response to jet

H. Stöcker ('05), J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Modification of jet structure

Medium response to jet

H. Stöcker ('05),

J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

(Jet-correlated, cannot be subtracted) $_{2}$

SMD2017 Yasuki Tachibana, September 15th 2017

SMD2017 Yasuki Tachibana, September 15th 2017

Jet quenching

J. D. Bjorken (1983), M. Gyulassy, M. Plumer (1990), M. Gyulassy, X.-N.Wang (1994), ...

- Collisions with medium constituents
- Induced parton radiation

Modification of jet structure

• Medium response to jet

H. Stöcker ('05),

J. Casalderrey-Solana, E. V. Shuryak, D. Teaney ('05),...

- Induced by energymomentum deposition
- Enhance the particle emission from medium

Modelings for Medium Response in Recent Studies

Jet evolution model with recoil partons

- Sampling of partons from thermalized medium for the collisions
- Add the recoiled partons to the jet

Linearized Boltzmann Transport (LBT) Model

T. Luo, S. Cao, X.-N, Wang, G.-Y. Qin,...

JEWEL

K. C. Zapp, R. Kunnawalkam Elayavalli, J. G. Milhano, U. A. Wiedemann,...

Jet evolution (AdS/CFT + PYTHIA) with backreaction

- Store the lost energy into thermalized medium as a perturbation
- Use linear expansion of Cooper-Frye for hadrons from medium response

Hybrid Strong/Weak Coupling Model

D. Pablos, J. Casalderrey-Solana, K. Rajagopal, J. G. Milhano D. C. Gulhan,...

Modelings of Medium Response in Recent Studies

Jet evolution + full-hydro model with source term

- Solve hydro eqs. with source term for medium evolution

- Source term $J^{\nu}(x)$ constructed by jet evolution calculation
- Use Cooper-Frye for hadrons from medium response

Jet Shower Transport + Hydro model

YT, N.-B. Chang, G.-Y. Qin,...

Coupled LBT Hydro Model (recoiled partons are also included) W. Chen, T. Luo, S. Cao, L. Pang, X.-N, Wang,...

Motivation

Full picture of jet quenching in heavy ion collisions

- Redistribution of the jet energy and momentum

- Precise interpretation of the experimental data
- Hints for medium response-free observables

Another possible manifestation of QGP's fluidity

- New approach for QGP properties (viscosity, sound velocity,...) in jet events R. B. Neufeld ('09), R. B. Neufeld, I. Vitev ('12), Alejandro Ayala *et al.* ('16), L. Yan, S. Jeon, C. Gale ('17)

Parton in Je

- QGP transport properties from in-medium thermalization
 - Mechanism of energy-momentum deposition into QGP fluid R. B. Neufeld ('09), E. lancu, B. Wu ('15),...

Full Jet Study with Jet shower Transport + Hydro Model

YT, N.-B. Chang, and G.-Y. Qin, [S PRC 95, 044909 (2017)]

SMD2012 Yasuki Tachibana, September 15th 2017

Jet shower Transport + Hydro Model YT, N.-B. Chang, G.-Y. Qin (17)

Transport equations for all partons in jet shower

N.-B. Chang, G.-Y. Qin ('16)

- Evolution of energy and transverse momentum distributions, $f_j(\omega_j, k_{j\perp}^2, t)$ (*j*: parton species)

$$\frac{df_{j}(\omega_{j},k_{j\perp}^{2},t)}{dt} = \hat{e}_{j}\frac{\partial}{\partial\omega_{j}}f_{j}(\omega_{j},k_{j\perp}^{2},t) \\
+ \frac{1}{4}\hat{q}_{j}\nabla_{k\perp}^{2}f_{j}(\omega_{j},k_{j\perp}^{2},t) \\
+ \sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},k_{i\perp}^{2})}{d\omega_{j}dk_{j\perp}^{2}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t) - \sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}dk_{i\perp}^{2}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t)$$

Initial (averaged) jet profiles are generated by PYTHIA

Jet shower Transport + Hydro Model YT, N.-B. Chang, G.-Y. Qin (17)

Transport equations for all partons in jet shower

N.-B. Chang, G.-Y. Qin ('16)

- Evolution of energy and transverse momentum distributions, $f_j(\omega_j, k_{j\perp}^2, t)$

(*j*: parton species)

Collisions with medium constituents

 $\frac{df_{j}(\omega_{j},k_{j\perp}^{2},t)}{dt} = \hat{e}_{j}\frac{\partial}{\partial\omega_{j}}f_{j}(\omega_{j},k_{j\perp}^{2}t) \quad \text{Collisional energy loss (longitudinal)} \\ + \frac{1}{4}\hat{q}_{j}\nabla_{k\perp}^{2}f_{j}(\omega_{j},k_{j\perp}^{2},t) \quad \text{Momentum broadening (transverse)}$

$$+\sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},k_{i\perp}^{2})}{d\omega_{j}dk_{j\perp}^{2}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t)-\sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}dk_{i\perp}^{2}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t)$$

Initial (averaged) jet profiles are generated by PYTHIA

Jet shower Transport + Hydro Model YT. N.-B. Chang, G.-Y. Qin ('17)

Transport equations for all partons in jet shower

N.-B. Chang, G.-Y. Qin ('16)

Evolution of energy and transverse momentum distributions, $f_j(\omega_j, k_{j\perp}^2, t)$ -

(*j*: parton species)

Collisions with medium constituents

 $\frac{df_{j}(\omega_{j},k_{j\perp}^{2},t)}{dt} = \hat{e}_{j}\frac{\partial}{\partial\omega_{j}}f_{j}(\omega_{j},k_{j\perp}^{2}t) \quad \text{Collisional energy loss (longitudinal)} \\ + \frac{1}{4}\hat{q}_{j}\nabla_{k_{\perp}}^{2}f_{j}(\omega_{j},k_{j\perp}^{2},t) \quad \text{Momentum broadening (transverse)}$

$$+\sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},k_{i\perp}^{2})}{d\omega_{j}dk_{j\perp}^{2}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t)-\sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}dk_{i\perp}^{2}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t)$$

Medium-induced radiation

Initial (averaged) jet profiles are generated by PYTHIA

- Hydrodynamic equations with source term
 - Describe hydrodynamic response to jet and background expansion

$$\partial_{\mu} T^{\mu\nu}_{\text{QGP}}(x) = J^{\nu}(x)$$

- Source term constructed from the solution of jet-shower transport eqs.

$$J^{\nu}(x) = -\sum_{j} \int \frac{d\omega_{j} dk_{j\perp}^{2} d\phi_{j}}{2\pi} k_{j}^{\nu} \left(\hat{e}_{j} \frac{\partial}{\partial \omega_{j}} + \frac{1}{4} \hat{q}_{j} \nabla_{k\perp}^{2} \right) f_{j}(\omega_{j}, k_{j\perp}^{2}, t) \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}^{\text{jet}}(\boldsymbol{k}_{j}, t))$$

$$Momentum \text{ exchange}$$
between medium and jet
$$\boldsymbol{\omega}_{j}$$

Assumption Instantaneous local thermalization of deposited energy and momentum

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~{
 m TeV}$
- EoS from lattice QCD

Evolution of medium and jet shower

gluon jet, initial transverse momentum: 150 GeV/c

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD

Evolution of medium and jet shower

gluon jet, initial transverse momentum: 150 GeV/c

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD

Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~{
 m TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~{
 m TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD

Evolution of medium and jet shower

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

gluon jet, initial transverse momentum: 150 GeV/c

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

(3+1)-D ideal hydro

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD

Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~{
 m TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

- Optical Glauber model in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 {
 m ~TeV}$
- EoS from lattice QCD
- Evolution of medium and jet shower

Full jet energy loss and suppression (Jet Quenching)

Full jet energy loss and suppression (Jet Quenching)

SMD2012 Yasuki Tachibana, September 15th 2017

Full jet energy loss and suppression (Jet Quenching)

1) Collisional energy loss (and absorption)

2) Kick outside the jet cone (by momentum broadening)

SMD2017 Yasuki Tachibana, September 15th 2017

Full jet energy loss and suppression (Jet Quenching)

- 1) Collisional energy loss (and absorption)
- 2) Kick outside the jet cone (by momentum broadening)
- 3) Medium-induced radiation outside the jet cone

Full jet energy loss and suppression (Jet Quenching)

- 1) Collisional energy loss (and absorption)
- 2) Kick outside the jet cone (by momentum broadening)
- 3) Medium-induced radiation outside the jet cone

- Full jet energy loss and suppression (Jet Quenching)
 - 1) Collisional energy loss (and absorption)
 - 2) Kick outside the jet cone (by momentum broadening)
 - 3) Medium-induced radiation outside the jet cone
- Particles from excited medium (Jet-correlated, cannot be subtracted)
 - Partially compensate the lost energy via 1) and 2)

$$\Delta \frac{dN}{d^3p} = \left. \frac{dN}{d^3p} \right|_{\text{w/jet}} - \left. \frac{dN}{d^3p} \right|_{\text{w/ojet}} - \frac{dN}{d^3p} \right|_{\text{w/ojet}} - \frac{dN}{d^3p} \Big|_{\text{w/ojet}} - \frac{dN}{d^3p} \Big|_{\text{w/oj$$

SMD2017 Yasuki Tachibana, September 15th 2017

(jets are generated by Pythia & MC Glauber) • Contribution of particles emitted from excited medium

(jets are generated by Pythia & MC Glauber) • Contribution of particles emitted from excited medium

(jets are generated by Pythia & MC Glauber) • Contribution of particles emitted from excited medium

(jets are generated by Pythia & MC Glauber) • Contribution of particles emitted from excited medium

(jets are generated by Pythia & MC Glauber) • Contribution of particles emitted from excited medium

Modification of Full Jet Shape

Jet shape function

$$\rho(r) = \frac{1}{N_{\text{jet}}} \sum_{\text{jet}} \left[\frac{1}{p_T^{\text{jet}}} \frac{\sum_{\text{trk} \in (r-\delta r/2, r+\delta r/2)} p_T^{\text{trk}}}{\delta r} \right]$$

- Inclusive, $p_T > 100 \text{ GeV}/c \ (R=0.3)$

Modification of Full Jet Shape

SMD2017 Yasuki Tachibana, September 15th 2017

¹³

Modification of Full Jet Shape

SMD2017 Yasuki Tachibana, September 15th 2017

Summary, Comments, and Outlook

Medium response to jet quenching in QGP

- Excitation in QGP fluid by the deposited momentum from jet
- Jet-correlated hadron emission from the excited medium
- Further modification of jet structure in Heavy ion collisions
- Full jet study with jet shower transport + hydro model YT, N.-B. Chang, G.-Y. Qin (17)
 - Jet transport equations + hydrodynamic equation with source term
 - Jet-induced shockwave (Mach cone) carrying energy to large angles
 - Increase of jet-cone size dependence
 - Medium response contribution dominates large-r region

Outlook

- Full (3+1)-D event by event jet + viscous fluid calculation
- More sophisticated source term

SMD2017 Yasuki Tachibana, September 15th 2017

SMD2017 Yasuki Tachibana, September 15th 2017

Cone-size dependence from experiments

Opposite pattern

Some details of model

• Jet quenching parameter \hat{q}

$$\hat{q}_q(x_{\text{jet}}) = \hat{q}_{q,0} \frac{T^3(x_{\text{jet}})}{T_0^3} \frac{p_{\text{jet}} \cdot u(x_{\text{jet}})}{p_{\text{jet}}^0}$$

 $\hat{q}_{q,0} = 1.7\,{
m GeV}^2/{
m fm}$ (chosen to fit the experimental data of $R_{
m PbPb}$)

 $T_0 = T (\boldsymbol{x} = 0, \tau = \tau_0) = 0.514 \text{ GeV}$ $\hat{q}_{g,0} = \frac{C_A}{C_E} \hat{q}_{q,0}$

Initial profile of medium

- Initial proper time $\tau_0 = 0.6 \,\mathrm{fm}/c$
- Optical Glauber model with b = 0

$$s(au_0, oldsymbol{x}_ot, \eta_{
m s}) = s_T(oldsymbol{x}_ot) H(\eta_{
m s})$$

$$s_{T}(\boldsymbol{x}_{\perp}) = \frac{C}{\tau_{0}} \left[\frac{(1-\alpha)}{2} n_{\text{part}}^{\boldsymbol{b}}(\boldsymbol{x}_{\perp}) + \alpha n_{\text{coll}}^{\boldsymbol{b}}(\boldsymbol{x}_{\perp}) \right], \ H(\eta_{\text{s}}) = \exp\left[-\frac{(|\eta_{\text{s}}| - \eta_{\text{flat}}/2)^{2}}{2\sigma_{\eta}^{2}} \theta \left(|\eta_{\text{s}}| - \frac{\eta_{\text{flat}}}{2} \right) \right] \quad \begin{array}{l} C = 19.8, \ \alpha = 0.14, \ \eta_{\text{flat}} = 3.8, \ \sigma_{\eta} = 3.2. \end{array} \right]$$

• Generation of inclusive jet events

- PYTHIA + MC Glauber Model $b = 3.5 \,\mathrm{fm}$
- Created and traveling in transverse plane $\eta_s = 0$

Jet Shape, hydro, and Jet energy deposition profile are 3D

Energy momentum conservation for QGP + jet system

$$\partial_{\mu} \left[T_{\text{QGP}}^{\mu\nu}(x) + T_{\text{jet}}^{\mu\nu}(x) \right] = 0$$

$$\begin{aligned} \partial_{\mu} T_{\text{QGP}}^{\mu\nu}(x) &= J^{\nu}(x), \ J^{\nu}(x) \equiv -\partial_{\mu} T_{\text{jet}}^{\mu\nu}(x) \\ &= -\sum_{j} \int \frac{d^{3}k_{j}}{\omega_{j}} k_{j}^{\nu} k_{j}^{\mu} \partial_{\mu} f_{j}(\boldsymbol{k}_{j}, \boldsymbol{x}, t) \\ &= -\sum_{j} \int \frac{d^{3}k_{j}}{\omega_{j}} k_{j}^{\nu} k_{j}^{\mu} \left[\partial_{\mu} f_{j}(\boldsymbol{k}_{j}, \boldsymbol{x}, t) \right]_{\hat{e}, \hat{q}} \end{aligned}$$

Only col. & broad. contribution Energy-momentum conservation during rad. processes;

$$\sum_{j} \int \frac{d^{3}k_{j}}{\omega_{j}} k_{j}^{\nu} k_{j}^{\mu} \left[\left. \partial_{\mu} f_{j}(\boldsymbol{k}_{j}, \boldsymbol{x}, t) \right|_{\text{rad.}} \right] = 0$$

<u>Approximation</u>: $\boldsymbol{x}(k_j, t) = \boldsymbol{x}_0^{\text{jet}} + \frac{\boldsymbol{k}_j}{\omega_j}t$

$$J^{\nu}(x) = -\sum_{j} \int \frac{d\omega_{j} dk_{j\perp}^{2} d\phi_{j}}{2\pi} k_{j}^{\nu} \left. \frac{df_{j}(\omega_{j}, k_{j\perp}^{2}, t)}{dt} \right|_{\text{col.}} \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}^{\text{jet}}(\boldsymbol{k}_{j}, t))$$

Jet reconstruction

• Jet- p_T

$$\begin{split} p_T^{\text{jet}} &= p_{T,\text{shower}}^{\text{jet}} + p_{T,\text{medium}}^{\text{jet}} \\ p_{T,\text{shower}}^{\text{jet}} &= \sum_j p_{T,\text{shower}}^j \left. \theta(\Delta R - r_i) \right|_{\text{w/ jet}} - \sum_i p_{T,\text{medium}}^i \left. \theta(\Delta R - r_i) \right|_{\text{w/ o jet}} \\ p_{T,\text{medium}}^{\text{jet}} &= \sum_i p_{T,\text{medium}}^i \left. \theta(\Delta R - r_i) \right|_{\text{w/ jet}} - \sum_i p_{T,\text{medium}}^i \left. \theta(\Delta R - r_i) \right|_{\text{w/ o jet}} \\ j: \text{ partons with } p_{T,\text{shower}}^j > 2 \text{ GeV/}c, \text{ } i: \text{ hadrons with } p_{T,\text{medium}}^i > 1 \text{ GeV/}c \end{split}$$

- p_T of hadrons emitted from medium ($p_{T,\text{medium}}^i$)
 - Cooper-Frye formula

$$E_{i}^{0}\frac{dN_{i}}{d^{3}p_{i}} = \frac{g_{i}}{(2\pi)^{3}}\int \frac{p^{\mu}d\sigma_{\mu}}{\exp\left[p^{\mu}u_{\mu}(x)/T(x)\right] \mp_{\rm BF} 1} \longrightarrow \sum_{i} p_{T,\rm medium}^{i} = \sum_{i}\int d^{3}p_{i} \ p_{T,i}\frac{dN_{i}}{d^{3}p_{i}}$$

 $u^{\mu}(x)$: flow velocity, T(x): temperature, g_i : degeneracy

(No hadronic interaction after the hydrodynamic evolution)

Generation of QGP hydro via source terms

New approach to initialize hydrodynamic fields

M. Okai, K. Kawaguchi, YT and T. Hirano ('17)

5

21

 p_T (GeV)

Similar approach: LEXUS model (Chun Shen et al.)