Nonperturbative Approach to Equation of State and Collective Modes of the QGP

Shuai Y.F. Liu and Ralf Rapp
Cyclotron Institute +
Dept. of Physics & Astronomy
Texas A&M University
College Station, TX
USA

XLVII International Symposium on Multiparticle Dynamics 2017 Tlaxcala City (Mexico), Sept. 11-15, 2017

1.) Exploring QCD Matter

- Bulk Properties: Equation of State, Transport Coefficients
- Microscopic Properties: Degrees of Freedom, Spectral Functions
- Phase Transitions: Condensate Structure

1.2 Dilepton Radiation at SPS ($\sqrt{s}=17.3$ GeV)

- Strong (resonance) coupling \Rightarrow hadrons melt approaching T_{pc}
- How do hadrons emerge when approaching **T** from above?
- Origin of strongly coupled QGP?

1.3 Introduction: A "Calibrated" QCD Force

[Bazavov et al '13]

- Vacuum quarkonium spectroscopy well described
- Free energy encodes medium modified potential

Objective: Determine in-medium of QCD force + infer emerging spectral + transport properties probing QGP at varying resolution

Outline

- 1.) Introduction
- 2.) Thermodynamic T-Matrix Approach
 - Hamiltonian, In-Medium Potential + Selfconsistency
- 3.) Equation of State + Spectral Functions
- 4.) Transport Properties
- 5.) Conclusions

2.1 Hamiltonian Approach

• In-Medium Hamiltonian with `bare' 2-body interactions

$$H = \sum \varepsilon_i(\mathbf{p})\psi_i^{\dagger}(\mathbf{p})\psi_i(\mathbf{p}) + \psi_i^{\dagger}(\frac{\mathbf{P}}{2} - \mathbf{p})\psi_j^{\dagger}(\frac{\mathbf{P}}{2} + \mathbf{p})V_{ij}^a\psi_j(\frac{\mathbf{P}}{2} + \mathbf{p}')\psi_i(\frac{\mathbf{P}}{2} - \mathbf{p}')$$

- effective in-medium mass $\varepsilon_i(\mathbf{p}) = \sqrt{M_i^2 + \mathbf{p}^2}$
- Interaction ansatz: Cornell potential with relativistic corrections

$$V_{ij}^{a}(\mathbf{p}, \mathbf{p}') = \mathcal{R}_{ij}^{\mathcal{C}} \mathcal{F}_{a}^{\mathcal{C}} V_{\mathcal{C}}(\mathbf{p} - \mathbf{p}') + \mathcal{R}_{ij}^{\mathcal{S}} \mathcal{F}_{a}^{\mathcal{S}} V_{\mathcal{S}}(\mathbf{p} - \mathbf{p}')$$

- color-Coulomb and string ("confining") interaction
- decent spectroscopy in vacuum

[Liu+RR '16]

• Implement into Brueckner / Luttinger-Ward-Baym approach

2.2 Thermodynamic T-Matrix in QGP

• Scattering equation

$$Q,q,g$$
 T
 $=$
 V
 $+$
 V
 T

- Perturbative approximation (weak coupling): $T_{ij} \approx V_{ij}$
- Strong coupling \rightarrow resummation: $T_{ij} = V_{ij} + \int V_{ij} D_1 D_p T_{ij}$
- Thermal parton propagators: $\mathbf{D}_p = 1 / [\omega \omega_k \Sigma_p(\omega, k)]$
- Parton self-energies \rightarrow self-consistency: $-\Sigma_p$ = T
- In-medium potential V?

2.3 Potential from Heavy-Quark Free Energy

•
$$\mathbf{Q}\mathbf{\bar{Q}}$$
 Free Energy: $F_{Q\bar{Q}}(r_1 - r_2) = -\frac{1}{\beta} \ln \left(\int_{-\infty}^{\infty} d\omega \sigma(\omega, r_1 - r_2) e^{-\beta\omega} \right)$

• Spectral Function:
$$\sigma(\omega, r) = \frac{1}{\pi} \frac{(V + \Sigma)_I(\omega)}{(\omega - (V + \Sigma)_R)^2 + (V + \Sigma)_I^2(\omega)}$$

• Potential ansatz:
$$V_R(E,r) = -\frac{4}{3}\alpha_s \frac{e^{-m_D r}}{r} - \sigma \frac{e^{-m_s r}}{m_s} - \frac{4}{3}\alpha_s m_D + \sigma \frac{1}{m_s}$$

remnant of long-range "confining" force in QGP

Outline

- 1.) Introduction
- 2.) Thermodynamic T-Matrix Approach
 - Hamiltonian, In-Medium Potential + Selfconsistency
- 3.) Equation of State + Spectral Functions
- 4.) Transport Properties
- **5.)** Conclusions

3.1 Self-Consistent Equation of State for QGP

Thermodynamic Potential

"Skeleton"
Diagrams

$$\Omega = \mp \frac{-1}{\beta} \sum_{n} \text{Tr} \{ \ln(-G^{-1}) + (G_0^{-1} - G^{-1})G \} \pm \Phi$$

$$\Phi = \frac{-1}{\beta} \sum_{\mathbf{n}, \mathbf{v}} \text{Tr} \{ \frac{1}{2\nu} (\frac{-1}{\beta})^{\nu} [(-\beta)^{\nu} \Sigma_{\nu}(G)] G \}$$

0.3

T (GeV)

0.4

0.2

- Resum **Φ** with Matrix-Log technique
- Broad hadronic resonances emerge near T_{pc} , dominate EoS

3.2 Parton Spectral Functions in QGP

- QGP structure changes with resolution scale
- Soft parton quasi-particles dissolve at low T, re-emerge with increasing M_{α} , p, T

Outline

- 1.) Introduction
- 2.) Thermodynamic T-Matrix Approach
 - Hamiltonian, In-Medium Potential + Selfconsistency
- 3.) Equation of State + Spectral Functions
- 4.) Transport Properties
- 5.) Conclusions

4.1 Transport Coefficients

Viscosity and Heavy-Quark Diffusion

- Strongly coupled: $(4\pi) \eta/s \sim (2\pi T) D_s$
- Perturbative: $(4\pi) \eta/s \sim 2/5 (2\pi T) D_s$
- Transition as **T** increases

5.) Summary

- Self-consistent quantum many-body approach to QGP
- Interaction kernel rooted in lattice QCD (fit HQ free energy)
- Remnants of long-range confining force survive well above T_{pc}
 - \Rightarrow large scattering rates \rightarrow broad spectral functions
- Strong-coupling description of QGP equation of state
 - no long-wavelength quasi-partons near T_{pc} (re-emerge at high p,T,m_Q)
 - partons convert into broad hadronic states near T_{pc}
 - ⇒ intimate relation between strong coupling and hadronization
- Transport coefficients show minimum structure + transition to perturbative behavior

4.1 Heavy-Flavor Transport at RHIC + LHC

- flow bump in $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ + large $\mathbf{v_2} \leftrightarrow$ strong coupling near $\mathbf{T}_{\mathbf{pc}}$ (recombination)
- high-precision $\mathbf{v_2}$: transition from elastic to radiative regime?

2.2 D-Meson + c-Quark Spectral Functions in QGP

T-matrix w/ "lattice potential" V

D-meson resonances near T_{pc}

In-Medium c-Quark Selfenergy

c-quark quasi-particles at high **T**

2.4.2 Free Energy from T-Matrix

• Free Energy
$$F_{Q\bar{Q}}(r_1-r_2) = -\frac{1}{\beta}\ln\left(G^>(-i\beta,r_1-r_2)\right) = -\frac{1}{\beta}\ln\left(\int_{-\infty}^{\infty}d\omega\sigma\left(\omega,r_1-r_2\right)e^{-\beta\omega}\right)$$

[Beraudo et al '08]

• Euclidean **T-matrix** in static limit

$$\tilde{T}(z_t|r) = V(z_t,r) + V(z_t,r)\,\tilde{G}_0^{(2)}(z_t - v^a, v^a)\,\,\tilde{T}(z_t|r) = \frac{V(z_t,r)}{1 - V(z_t,r)\,\tilde{G}_0^{(2)}(z_t)}$$

• Spectral Function $\sigma(\omega, r) = \frac{1}{\pi} \frac{(V + \Sigma)_I(\omega)}{(\omega - (V + \Sigma)_R)^2 + (V + \Sigma)_I^2(\omega)}$

[S.Liu+RR '15]

- Key ingredients: imaginary parts + their ω dependence
- heavy-quark self-energies calculated self-consistently from **Qq T-matrix**

2.4 Potential Extraction from Lattice Data

• Free Energy
$$F_{Q\bar{Q}}(r_1-r_2) = -\frac{1}{\beta}\ln\left(G^>(-i\beta,r_1-r_2)\right) = -\frac{1}{\beta}\ln\left(\int_{-\infty}^{\infty}d\omega\sigma\left(\omega,r_1-r_2\right)e^{-\beta\omega}\right)$$

• **QQ Spectral Function**
$$\sigma(\omega, r) = \frac{1}{\pi} \frac{(V + \Sigma)_I(\omega)}{(\omega - (V + \Sigma)_R)^2 + (V + \Sigma)_I^2(\omega)}$$

Potential close to free energy

[Burnier et al '14]

- Account for large imaginary parts
- Remnant of confining force!

[S.Liu+RR '15]